Skip to main content
Article thumbnail
Location of Repository

Genetic manipulation of reptilian embryos: toward an understanding of cortical development and evolution

By Tadashi eNomura, Tadashi eNomura, Wataru eYamashita, Hitoshi eGotoh and Katsuhiko eOno


The mammalian neocortex is a remarkable structure that is characterized by tangential surface expansion and six-layered lamination. However, how the mammalian neocortex emerged during evolution remains elusive. Because all modern reptiles have a homolog of the neocortex at the dorsal pallium, developmental analyses of the reptilian cortex are valuable to explore the origin of the neocortex. However, reptilian cortical development and the underlying molecular mechanisms remain unclear, mainly due to technical difficulties with sample collection and embryonic manipulation. Here, we introduce a method of embryonic manipulations for the Madagascar ground gecko and Chinese softshell turtle. We established in ovo electroporation and an ex ovo culture system to address neural stem cell dynamics, neuronal differentiation and migration. Applications of these techniques illuminate the developmental mechanisms underlying reptilian corticogenesis, which provides significant insight into the evolutionary steps of different types of cortex and the origin of the mammalian neocortex

Topics: Reptiles, evolution, Cortex, ex vivo culture, amniotes, in ovo electroporation, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571
Publisher: Frontiers Media S.A.
Year: 2015
DOI identifier: 10.3389/fnins.2015.00045
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.