Article thumbnail

Computer Recognition of Prismatic Solids

By Arnold K. Griffith

Abstract

An investigation is made into the problem of constructing a model of the appearance to an optical input device of scenes consisting of plane-faced geometric solids. The goal is to study algorithms which find the real straight edges in the scenes, taking into account smooth variations in intensity over faces of the solids, blurring of edges and noise. A general mathematical analysis is made of optimal methods for identifying the edge lines in figures, given a raster of intensities covering the entire field of view. There is given in addition a suboptimal statistical decision procedure, based on the model, for the identification of a line within a narrow band on the field of view given an array of intensities from within the band. A computer program has been written and extensively tested which implements this procedure and extracts lines from real scenes. Other programs were written which judge the completeness of extracted sets of lines, and propose and test for additional lines which had escaped initial detection. The performance of these programs is discussed in relation to the theory derived from the model, and with regard to their use of global information in detecting and proposing lines

Year: 1970
OAI identifier: oai:dspace.mit.edu:1721.1/6882
Provided by: DSpace@MIT
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://hdl.handle.net/1721.1/6... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.