Location of Repository

Mechanistic Mathematical Modeling Tests Hypotheses of the Neurovascular Coupling in fMRI.

By Karin Lundengård, Gunnar Cedersund, Sebastian Sten, Felix Leong, Alexander Smedberg, Fredrik Elinder and Maria Engström


Functional magnetic resonance imaging (fMRI) measures brain activity by detecting the blood-oxygen-level dependent (BOLD) response to neural activity. The BOLD response depends on the neurovascular coupling, which connects cerebral blood flow, cerebral blood volume, and deoxyhemoglobin level to neuronal activity. The exact mechanisms behind this neurovascular coupling are not yet fully investigated. There are at least three different ways in which these mechanisms are being discussed. Firstly, mathematical models involving the so-called Balloon model describes the relation between oxygen metabolism, cerebral blood volume, and cerebral blood flow. However, the Balloon model does not describe cellular and biochemical mechanisms. Secondly, the metabolic feedback hypothesis, which is based on experimental findings on metabolism associated with brain activation, and thirdly, the neurotransmitter feed-forward hypothesis which describes intracellular pathways leading to vasoactive substance release. Both the metabolic feedback and the neurotransmitter feed-forward hypotheses have been extensively studied, but only experimentally. These two hypotheses have never been implemented as mathematical models. Here we investigate these two hypotheses by mechanistic mathematical modeling using a systems biology approach; these methods have been used in biological research for many years but never been applied to the BOLD response in fMRI. In the current work, model structures describing the metabolic feedback and the neurotransmitter feed-forward hypotheses were applied to measured BOLD responses in the visual cortex of 12 healthy volunteers. Evaluating each hypothesis separately shows that neither hypothesis alone can describe the data in a biologically plausible way. However, by adding metabolism to the neurotransmitter feed-forward model structure, we obtained a new model structure which is able to fit the estimation data and successfully predict new, independent validation data. These results open the door to a new type of fMRI analysis that more accurately reflects the true neuronal activity

Topics: Biology (General), QH301-705.5
Publisher: Public Library of Science (PLoS)
Year: 2016
DOI identifier: 10.1371/journal.pcbi.1004971
OAI identifier: oai:doaj.org/article:69be3d898ceb4cebba99b777377eb714
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1553-7358 (external link)
  • https://doaj.org/toc/1553-734X (external link)
  • http://europepmc.org/articles/... (external link)
  • https://doaj.org/article/69be3... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.