Redetermination of ruizite, Ca2Mn3+2[Si4O11(OH)2](OH)2·2H2O

Abstract

The crystal structure of ruizite, ideally Ca2Mn3+2[Si4O11(OH)2](OH)2·2H2O [dicalcium dimanganese(III) tetrasilicate tetrahydroxide dihydrate] was first determined in space group A2 with an isotropic displacement parameter model (R = 5.6%) [Hawthorne (1984). Tschermaks Mineral. Petrogr. Mitt. 33, 135–146]. A subsequent refinement in space group C2/m with anisotropic displacement parameters for non-H atoms converged with R = 8.4% [Moore et al. (1985). Am. Mineral. 70, 171–181]. The current study reports a redetermination of the ruizite structure by means of single-crystal X-ray diffraction data of a natural sample from the Wessels mine, Kalahari Manganese Field, Northern Cape Province, South Africa. Our data (R1 = 3.0%) confirm that the space group of ruizite is that of the first study rather than C2/m. This work improves upon the structure reported by Hawthorne (1984) in that all non-H atoms were refined with anisotropic displacement parameters and all hydrogen atoms were located. The crystal structure consists of [010] chains of edge-sharing MnO6 octahedra flanked by finite [Si4O11(OH)2] chains. The Ca2+ cations are situated in the cavities of this arrangement and exhibit a coordination number of seven

Similar works

Full text

thumbnail-image

Directory of Open Access Journals

redirect
Last time updated on 09/08/2016

This paper was published in Directory of Open Access Journals.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.