Skip to main content
Article thumbnail
Location of Repository

Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae) Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae).

By Yingying Wang, Da Xiao, Ran Wang, Fei Li, Fan Zhang and Su Wang


The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes) were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia

Topics: Medicine, R, Science, Q
Publisher: Public Library of Science (PLoS)
DOI identifier: 10.1371/journal.pone.0157684
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.