Skip to main content
Article thumbnail
Location of Repository

Arabic web pages clustering and annotation using semantic class features

By Hanan M. Alghamdi, Ali Selamat and Nor Shahriza Abdul Karim

Abstract

To effectively manage the great amount of data on Arabic web pages and to enable the classification of relevant information are very important research problems. Studies on sentiment text mining have been very limited in the Arabic language because they need to involve deep semantic processing. Therefore, in this paper, we aim to retrieve machine-understandable data with the help of a Web content mining technique to detect covert knowledge within these data. We propose an approach to achieve clustering with semantic similarities. This approach comprises integrating k-means document clustering with semantic feature extraction and document vectorization to group Arabic web pages according to semantic similarities and then show the semantic annotation. The document vectorization helps to transform text documents into a semantic class probability distribution or semantic class density. To reach semantic similarities, the approach extracts the semantic class features and integrates them into the similarity weighting schema. The quality of the clustering result has evaluated the use of the purity and the mean intra-cluster distance (MICD) evaluation measures. We have evaluated the proposed approach on a set of common Arabic news web pages. We have acquired favorable clustering results that are effective in minimizing the MICD, expanding the purity and lowering the runtime

Topics: k-Means, Semantic similarity, Text clustering, Arabic webpage, Electronic computers. Computer science, QA75.5-76.95
Publisher: Elsevier
Year: 2014
DOI identifier: 10.1016/j.jksuci.2014.06.002
OAI identifier: oai:doaj.org/article:2e31426474364d34b18e63a0021d9334
Journal:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doaj.org/toc/1319-1578 (external link)
  • http://www.sciencedirect.com/s... (external link)
  • https://doaj.org/article/2e314... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.