Skip to main content
Article thumbnail
Location of Repository

Fault rock evolution and fluid flow in sedimentary basins

By Susan Johanna Hippler

Abstract

Structural studies have been undertaken in two extensional fault regimes associated with post-Caledonian basin-forming events in northern Scotland. A combination of detailed mapping and microstructural analysis has revealed the deformation processes and mechanisms involved in fault rock evolution and fluid flow associated with extensional faulting in upper crustal conditions.\ud \ud Intrabasinal fault rock evolution has been investigated in the Orcadian Basin, NE Scotland, which developed in Old Red Sandstone (ORS) times, soon after cessation of the Caledonian Orogeny. High pore fluid pressures developed in lower Middle ORS lacustrine facies sediments as a result of overpressuring due to rapid subsidence in the early stages of basin evolution. This facilitated gravity-driven movement of sediments in the hangingwalls of tilted half-grabens, resulting in the development of bedding parallel detachment horizons. These horizons contain shear sense indicators showing displacement to the W-WNW, whilst normal\ud faults which detach onto these horizons show NW-SE extension\ud directions. Microstructures indicate that displacement within the bedding parallel detachment horizons was accommodated by independent particulate flow processes in weakly lithified sediments.\ud \ud The Scapa Fault System was active in upper Middle ORS to Upper ORS times during deposition of the fluvial Scapa Sandstone. Microstructures in the Scapa Sandstone in the hangingwall of the North Scapa Fault indicate that this early faulting led to extreme grain size reduction by a\ud combination of grain boundary and transgranular fracture processes. The cataclasis, together with subsequent precipitation of illite cement up to one metre from the fault plane resulted in the sealing of the fault early in the diagenetic history of the sediment.\ud \ud Subsequent uplift of the Orcadian Basin, most probably during Carboniferous times, resulted in a range of inversion geometries. In the lower Middle ORS lacustrine facies rocks, thrusts exploited the bedding parallel detachment horizons, and folds and reverse faults developed as a result of buttressing against the earlier normal faults. The presence of vein arrays associated with these later reverse faults suggests the existence of high pore fluid pressures. Bitumen in these veins indicates\ud the mobility of hydrocarbons at the time of deformation.\ud \ud The North Scapa Fault was reactivated in a sinistral, oblique-slip sense during the inversion event. Fracture arrays and narrow cataclastic zones outside the previously developed sealed domain provided pathways for the migration of mature hydrocarbons. The East Scapa Fault reactivated in a reverse sense, and also contains fault rocks which record the presence of hydrocarbons at this time.\ud \ud Permo-Carboniferous dykes on Orkney are deformed during later dextral movements on the Great Glen fault system, which further reactivated the East Scapa Fault in a (dextral) transtensional sense. The development of fault rocks along the East Scapa Fault at this time is\ud complex and heterogeneous, and is dependent on fault geometry and kinematics.\ud \ud Basin-margin faults exposed on the NW Scottish Mainland are most probably related to extension during evolution of the Minch Basin to the west of Scotland. The steeply-dipping extensional faults cut through Caledonian thrust sheets in Sango Bay, Durness. The resulting cataclastic deformation in a quartzite with an originally mylonitic microstructure has allowed assessment of the influence of initial\ud microstructure on the cataclastic grain size reduction processes. The evolution of the fault rocks in terms of clast size, and clast/matrix ratios is not a simple function of displacement magnitude on the faults.\ud \ud Detalied microstructural investigation in the quartzite thrust sheet reveals a range of cataclastic fault rocks, from clast dominated microbreccias to matrix dominated ultracataclasites. The recrystallised grain size and the sub-grain size in the original mylonite appear to\ud control the development of the fine-grained matrix in the microbreccias and cataclasites by locating fracture along grain and sub-grain boundaries. Further grain size reduction generating the ultracataclasites and the finer-grained matrix zones in the microbreccias is dominated by transgranular fracturing.\ud \ud The host rock clasts present in the fault zones in the quartzite show a significant increase in dislocation density indicating that a component of low temperature crystal plasticity is associated with the faulting. In\ud addition, the fault rocks show evidence of partial cementation by the growth of quartz and carbonate cements. This emphasises the importance of fluids during healing of the fault zone.\u

Publisher: Earth Sciences (Leeds)
Year: 1989
OAI identifier: oai:etheses.whiterose.ac.uk:516

Suggested articles

Citations

  1. 1959.
  2. 1973. The influence of texture on porosity and permeability of unconsolidated sand. Bull. Am. Assoc. Pet.
  3. 1976.
  4. 1977.
  5. 1979. Differential stress determined from deformation induced microfractures of the Moine Thrust Zone. Jnl. Geophys. Res. 84, 7495-7509.
  6. 1981. Particulate flow and the generation of cleavage. Tectonophysics,
  7. 1981. Studies of natural fractures, fault zone
  8. 1982.
  9. 1984.
  10. 1986. Palaeomagnetism of old red
  11. 1987.
  12. 1987. Devonian correlations, environments and tectonics across the Great
  13. 1987. Lithospheric stretching, detached normal faulting and footwall uplift. In: Coward, M.P., Dewey,
  14. 1988. Sedimentary facies evolution in continental fault-bounded basins formed by
  15. 1989.
  16. 3417-3420.2 1 5 Gallagher, J.J., Friedman, M., Hand in, J. and Sowers,
  17. 55, 2177-2193.
  18. a scanning electron microscope. Int. Jnl. Rock. Mech. Min. Sci.
  19. A.M.
  20. A.N.,
  21. Allen,
  22. Am.
  23. Am. 88, 1667-1677, Brown, J.F. 1975. Potassium-argon evidence of a Permian Age for
  24. and
  25. and gas migration-chemical and physical constraints. Bull. Am. Assoc. Pet. Geol. 63, 761-781.
  26. and II. W.H. Freeman, San Francisco.
  27. and Mitchell, J.G. 1977. The
  28. and Paulis, T.L. 1981. Late Cenozoic deformation in the forearc region: Matanuska Valley, Alaska: three-dimensional strain
  29. and Price, NJ. (eds.). Thrust and nappe tectonics Spec. Publ. Geol. Soc.
  30. and Sibouet, J-C. 1982. Plate boundaries and extensional tectonics. Tectonophysics.
  31. and style of crustal extension north of the Scottish mainland. In: Coward, M.P., Dewey, J.F., and Hancock, P.L. (eds.), Continental extensional tectonics.
  32. and the generation of fault gouge. Bull. Geol. Soc. Am., 85,
  33. and Wilshaw, T.R. 1975. Fracture of
  34. Anderton, R., Bridges, P.H., Leeder, M.R., and Selwood, B.W. 1979. A dynamic
  35. areas of extensional tectonics. Jnl. Stuct. Geol. 5, 153-160.
  36. Ashby,
  37. Assoc. Pet. Geol. 50, 2119-2149.
  38. Astin, T.R. 1985. The palaeogeography of the Middle Devonian Lower Eday Sandstone, Orkney. Scott. Jnl. Geol. 21, 353-376.
  39. Atkinson, B.K. 1984. Subcritical crack growth in geological
  40. Atkinson, B.K., and Avdis,
  41. Aydin, A. 1978. Small faults as
  42. Aydin, A., and
  43. B.K.
  44. Baker, E.G. 1960. A hypothesis
  45. Baker, E.G. 1962. Distribution of hydrocarbons in petroleum migration and accumulation. In: Fundamental
  46. Ballance, P. J. and Reading, H.G.
  47. Barnett, J.A.M., Mortimer, J., Rippon,
  48. Barr, D. 1985.
  49. Basins
  50. Blundell,
  51. Bogomolov, Y.G., Kudelsky, A.V., and Lapshin, N.N. 1978.
  52. Bowler, S. 1987.
  53. Brace, W.E., and
  54. Bradley, J.S. 1975. Abnormal
  55. Brock, W.G., and Engelder, T. 1977.
  56. Bull. Am. Assoc. Pet. Geol. 37, 1954-2026.
  57. Butler, R.W.H. 1987. Thrust sequences. Jnl. Geol. Soc. Lond. 144, 619-634.
  58. C.B.,
  59. C.E.
  60. calculated
  61. Caledonian
  62. (1975). Capillary pressures in stratigraphic traps. Bull. Am. Assoc.
  63. cataclastic deformation in a quartzite. Unpublished PhD
  64. Chase, C.G. 1989. Role of crustal flexure in initiation of low-angle normal
  65. Chester,
  66. Christie, J.M. 1963. The Moine Thrust Zone in the
  67. cleave
  68. comments
  69. Cordell, R.J. 1972. Depths of oil origin and primary
  70. Coward, M.P.
  71. Coward, M.P. 1983. The thrust and
  72. Coward, M.P. 1986. Heterogeneous
  73. Coward, M.P., and Enfield, M.A.
  74. Coward, M.P., Enfield, M.A.,
  75. (1978). Crack extension from flaws in a brittle material subjected to compression.
  76. Crans, W., Mandl, G., and Haremboure, J. 1980. On
  77. D., and Johnson, M.R.W. 1980. Structural evolution in the northern part of the Moine Thurst Belt, N.W Scotland. Trans. R. Soc. Edinb. Earth Sci. 71, 69-96.
  78. D.H. 1963. The Achanarras limestone of the middle old age sandstone, Caithness,
  79. D.W. 1982. Tectonic deformation of Wingate sandstone, Colorado National
  80. Davis,
  81. Dayan, H. 1981. Deformation studies of
  82. Deformation
  83. Duindam, P., & Van Hoorn,
  84. Ellis,
  85. Ellis, P.G., and
  86. Enfield, M.E. 1988. The geometry of
  87. Enfield, M.E., and Coward, M.P. 1987. The structure of the West Orkney Basin,
  88. entrapment.
  89. Etheridge,
  90. Fannin, N.G.T. 1970. The sedimentary
  91. Faulting
  92. faults
  93. faults:
  94. Ferguson, C.C., LLoyd, G.E., and Knipe, R.J.
  95. Flourney, L.A., and Ferrell, R.E.
  96. formation. Jnl. Geophys. Res.
  97. four quartzose sandstones. Jul. Sed. Petrol. 58, 228-246.
  98. framework and pre-Permian history of the North
  99. G.T.
  100. G.T.,
  101. Galloway, W.E., Hobday, D.K., and Magara,
  102. Gans,
  103. Geol.
  104. Gibbs,
  105. Gibbs, A.D: 1984b.
  106. Giles, M.R.
  107. Grant, N.T. 1989. Deformation and fluid processes in thrust sheets from the Central Pyrenees. Unpublished PhD thesis,
  108. Griggs, D., and Handin, J. 1966. Observations
  109. Guidish, T.M.,
  110. H.,
  111. Hamilton, R.F.M., and Trewin,
  112. Handy, M.R. 1986. The structure
  113. Harding, T.P. 1983. Structural inversion
  114. Harding, T.P.,
  115. Heald, M.T., and Larese, R.E. 1974. Influence
  116. Hobbs, B.E., McClaren, A.C., and
  117. Houston, Texas, 4, 2643-2653.226 Weber, KJ., and Pilaar, W.F., Lehner, F., and Precious, R.G. 1978. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures.
  118. Hubbert, M.K.
  119. Hunt,
  120. Hydrocarbon
  121. in
  122. In: Moore, J. C. (ed.) Structural fabrics in DSDP cores from forearcs. Geol. Soc. Am. Mem. 166, 45-54.218 Knipe,
  123. Issue.
  124. J.C. 1966. Stratigraphic traps in a valley
  125. J.E.A.
  126. J.J.,
  127. Jackson, J.A. 1985. A seismological study of normal faulting in the
  128. Jackson, J.A., White, N.J., Garfunkel, Z., and Anderson,
  129. Jnl.
  130. Jnl. Struct. Geol. 5, 19-35.A model for the 142, 245-58. Hydrology of large Pub.
  131. Johnson, M.R.W., Kelley, S.P., Oliver,
  132. Jones, M.E., and Preston, R.M.F. 1987. Introduction to Deformation of sediments and sedimentary
  133. K.
  134. Kilenyi, T., and Stanley, R. 1985. Petroleum prospects in the northwestern seaboard
  135. La Fountain, L.J., and Jackson, R.E. 1973. Porosity
  136. Law, R.D. 1987. Heterogenous deformation and quartz crystallographic fabric transitions: natural
  137. Law, R.D. 1987. The influence of crystallographic orientation and grain boundary migration in microstructural and textural
  138. Law, R.D., and
  139. Law, R.D., Casey, M. and Knipe,
  140. Lawn, B.R.
  141. Leeder,
  142. Leverett, M.C. 1941.
  143. Logan,
  144. Lowell,
  145. M. E. 1972. Analysis of grain and particle size distribution in metallic materials. Int.
  146. M., and Seguret, M. 1987.
  147. M.S., and Bird, J.M. 1979.
  148. M.V.,
  149. Magara, K. 1976. Water expulsion from elastic sediments during compaction, directions and volumes. Bull. Am. Assoc. Pet. Geol. 60, 543-553.
  150. Mandl, G., and Sijpestein, C.H.K. 1986. Fault geometries in basement-induced wrench faulting under different initial stress
  151. Marshak,
  152. Marshall, J.E.A., and Allen,
  153. Marshall, J.E.A., and Astin, T.R. 1989. Devonian and later
  154. McAlpine, A. 1978. The upper old red
  155. McClay, K.R., and Ellis, P.G.
  156. McClay, K.R., Norton, M.G., Coney, P., and Davis,
  157. McKenzie, D.P. 1978. Some remarks on the development of sedimentary basins.
  158. mechanics
  159. mechanism
  160. Morrow, C.A., Shi, L.Q., and Byerlee, J.D. 1982. Strain
  161. Murchison, R.I. 1859a.
  162. Murchison, R.I. 1859b. On the succession of the older
  163. (1960). Mylonitic rocks of the Moine Thrust Zone
  164. normal
  165. Norton, M.G. 1982. The kinematics and
  166. Norton, M.G. 1986. Late Caledonide extension in western Norway: a response to extreme
  167. of
  168. of faulting in three-dimensional strain field. Tectonophysics, 47, 109-29.
  169. Offshore Technology Conference, Paper 3356, 2643-2652.
  170. oil. Science, 129, 871-874.
  171. Olgaard,
  172. on the margin of the North Minch Basin, Lewis, Jnl. Geol. Soc. Lond. 131, 183-202.
  173. On the term 'soft sediment' deformation. ml. Struct. Geol. 6,
  174. Ord,
  175. P.G. 1987. The theory of subcritical crack growth with applications to minerals and
  176. P.G., and Knipe, R.J. 1987. Model studies of inversion
  177. Palaeomagnetism of volcanics and sediments of the Eday Group, southern
  178. Parnell, J.T. 1983. The distribution of hydrocarbon minerals in the Orcadian Basin. Scott. Jnl. Geol. 19,
  179. Pickering,
  180. Pickering, K.T. 1984. The upper Jurassic
  181. Pittman, E.D. 1981.
  182. Poirier, J.P. 1985. Creep
  183. Poirier, J.P., and Nicolas, A. 1975. Deformation induced recrystallization due to progressive misorientation of subgrains,
  184. Pollard, D.D., and
  185. (1981). Pore volume changes during frictional sliding of simulated faults. In: Carter, N.L., Friedman, M., Logan, J.M., and
  186. pressure
  187. Prior,
  188. Proffett,
  189. quartz.
  190. R.G. 1987. The extensional strength of the continental lithosphere: its dependence on
  191. R.H.
  192. R.H.,
  193. R.H., Francois, R.,
  194. R.J. 1982. Diagenetic sequence related to structural history and petroleum accumulation: Spindle Field, Colorado. Bull. Am. Assoc. Pet. Geol. 66,
  195. R.J., and Dayan, H. 1984.
  196. R.W.H. 1984. Structural evolution of the Moine Thrust Belt between Loch
  197. R.W.H.,
  198. Rankin,
  199. Reches, Z. 1983.
  200. recrystallization
  201. regional
  202. research
  203. review.
  204. Robson, P., Sommer,
  205. Rock, N.M.S.
  206. Rogers,
  207. Rossel, N.C. 1982. Clay mineral diagenesis
  208. Rudnicki, J.W. 1980. Fracture mechanics applied to
  209. Rutter, E.H., and
  210. Rutter, E.H., and White,
  211. Rutter, E.H., and White, S.H. 1979a.
  212. S ibs on, R.H. 1981. Controls on low-stress
  213. S.
  214. S., Lundberg, N., Schoonmaker, J., Cowan, D.S., Gonzales, E., and Lucas, S.E. 1986. Scaly Fabrics
  215. S.D., Mullis, J.,
  216. Sammis, C., King, G., and Biegel, R.
  217. Sammis, C.G.,
  218. Schmid, S.M.
  219. Sclater, LG., and Christie, P.A.F. 1980. Continental stretching: an explanation of the post-mid-Cretaceous
  220. sediment
  221. seismic-
  222. shallow earthquake source. Jnl. Geol. Soc. Lond. 140, 741-767.
  223. Shape
  224. Shi, Y., and Wang, C.Y.
  225. Sib son, R.H. 1987. Earthquake rupturing as
  226. Sibson, R.H. 1977. Fault rocks and fault mechanisms.
  227. Sibson, R.H. 1986.
  228. skin
  229. Smith, D.I. 1977. The Great Glen Fault. In: Gill,
  230. Smythe, D.K.J. 1984. MOIST and the continuity of crustal reflector geometry along the Caledonian-Appalachian Orogen. Jill.
  231. Sommer, F. 1978. Diagenesis of
  232. Sonder, L.J., England, P.C., Wernicke, B.P., and Christiansen, R.L. 1987.
  233. Soper, N.J. 1971. The
  234. source rocks, thermal maturity and burial history of the Orcadian Basin, Scotland. In: Fleet, A.J., Kelts, K., and Talbot, M.R.,
  235. state flow in metamorphic rocks. Wiley, London. 444pp.
  236. Steel, R.J.
  237. stereology. Addison Wesley. 244 pp.
  238. structure of the foreland to the Caledonian Orogen, NW Scotland: Results of the BIRPS WINCH profile. Tectonics, 5,
  239. Sunderland, J. 1972. Deep sedimentary basins
  240. Swain, M.V., and Lawn, B.R. 1976. Indentation fracture of brittle rocks and glasses. International Jnl.
  241. Swensen,
  242. T.G.
  243. The geology of the Orkneys. Mem. Geol. Surv. G.B. Wilson, H.H. 1975. Time of hydrocarbon expulsion, paradox for geologists and geochemists. Bull. Am. Assoc. Pet. Geol. 59, 69-84.
  244. Theoretical
  245. Theory
  246. Thompson, G.A., and Burke, D.B.
  247. Trewin, N.H. 1976. Correlation of the
  248. Troxell,
  249. Tullis, T.E. 1986. Friction and Faulting. Spec. Issue, Pure and Appl. Geophys. 124,
  250. Urai, J.L., Means, W.D., and Lister, G.S.
  251. van Breeman, 0., Aftalion, M., and Johnson, M.R.W. 1979. Age
  252. Vandervoo, R., and Scotese, C.
  253. Vernon,
  254. visco-elastic lithosphere: theory and examples. Geophys. Jnl.
  255. W.E. 1986. Hydrogeological regimes of sandstone diagenesis. In: McDonald, D.A., and Surdam, R.C. (eds.). Sandstone Diagenesis. Am.
  256. Wall,
  257. Wang, C.H. 1986. Internal Structures of Fault
  258. Warner, M.R. 1987. Extensional structures on the western UK continental shelf: A
  259. Watson, J.V.
  260. Watterson, J. 1986.
  261. Weber, K.J., and Daukoru, E. 1975. Petroleum geology of the Niger Delta: 9th World Petroleum Congress Transactions, 2, 209-221.
  262. Weber, KJ. 1980. Influence on fluid flow of common sedimentary structures in sand bodies. Soc. of Pet. Eng., 9247, 1-12.
  263. Weber, KJ., and Mandl, G. 1978. The role of faults in hydrocarbon migration and trapping in Nigerian growth fault structures. Proc. 10th Annual Offshore Tech. Conf.
  264. Welbon, A. 1988. The influence of intrabasinal faults on the development of a linked thrust system. Geolog. Rundschau, 77, 11-24.
  265. Wernicke, B. 1981. Low-angle normal faults in the Basin and Range Province. Nappe Tectonics in an expanding Orogen. Nature, 291, 645-693.
  266. Wernicke, B. 1985. Uniform-sense normal simple shear of the continental lithosphere. Can. Jnl. Earth Sci., 22, 108-125.
  267. Wernicke, B., and Burchfiel, B.C. 1982. Modes of extensional tectonics. Jnl. Struct. Geol. 4, 105-115.
  268. Westbrook, G.K., and Smith, M.J. 1983. Long decollements and mud volcanoes; evidence from the Barbados Ridge Complex for the role of high pore-fluid pressure in the development of an accretionary complex. Geology, 11, 279-283.
  269. Westoll, T.S. 1979. Devonian fish biostratigraphy. In: House, M.R., Scrutton, C.T., and Bassett, M.G. (eds.), The Devonian System. Spec. Pap. Palaeontol. 23, 341-353.
  270. Wheeler, J. 1987. Variable-heave models of deformation above listric normal faults: the importance of area conservation. Jnl. Struct. Geol., 9, 1047-1049.
  271. White, N.J., Jackson, J.A., and McKenzie, D.P. 1986. The relationship between the geometry of normal faults and that of the sedimentary layers in their hangingwalls. Jul. Struct. Geol., 8, 897-909.
  272. White, NJ. 1989. Nature of lithospheric extension in the North Sea. Geology, 17, 1 1 1-1 1 4.
  273. White, S.H. 1973a. The dislocation structures responsible for the optical effects in some naturally deformed quartzites. Jnl. Material Sci., 8, 490-499.
  274. White, S.H. 1973b. Syntectonic recrystallisation and texture development in quartz. Nature Phys. Sci. 244, 276-278.
  275. White, S.H. 1976. Effects of strain on the microstructures fabrics and deformation mechanisms in quartzites. Phil. Trans. R. Soc. London, A283, 69-86.
  276. White, S.H. 1977. Geological significance of recovery and recrystallization processes in quartz. Tectonophysics 39, 143-170.
  277. White, S.H. 1979a. Difficulties associated with palaeostress estimates. Bull. Mineral. 102, 210-215.
  278. White, S.H. 1979b. Grain and sub-grain size variations across a mylonite zone. Contr. Miner. Petrol. 70, 193-202.
  279. White, S.H. 1986. Comparative microstructures of natural and experimentally produced clay bearing
  280. White, S.H., Evans, D.J., and Zhong, D.-L. 1982. Fault rocks of the Moine Thrust Zone: microstructures and textures of selected mylonites. Textures and Microstructures, 5, 33-61.
  281. Wilcox, R.E., Harding, T.P. and Seely, D.R. 1973. Basic wrench tectonics. Bull. Am. Assoc. Pet. Geol., 57, 57-96.
  282. Williams, G., and Vann, I. 1987. The geometry of listric normal faults and deformation in their hanging wall. Jnl. Struct. Geol., 9, 789-796.2 2 7 Wilson, G.V., Edwards, W., Knox, J., Jones, R.C.B., and Stevens, J.V. 1935.
  283. Wiltschko, D.V., and Eastman, D.B. 1983. Role of basement warps and faults in localising thrust fault ramps. Geol. Soc. Am. Mem. 158, 177-190.
  284. Wood, J.R., and Hewett, T.A. 1982. Fluid convection and mass transef in porous sandstones - a theoretical model. Geochim. et. Cosmochim. Acta 46, 1707-1713.
  285. Wood, R., and Barton, P. 1983. Crustal thinning and subsidence in the North Sea. Nature, 302, 134-136.
  286. Ziegler, P.A. 1983. Inverted basins in the Alpine Foreland. In: Seismic expression of structural styles - a picture and work atlas. AAPG studies in Geology 15. 3, 3.3-3 to 3.3-12.
  287. Ziegler, P.A. 1985. Late Caledonian framework of western and central Europe. In: Gee, D.G., and Sturt, B.A. (eds.). The Caledonian Orogen - Scandinavia and related areas. Wiley & Sons, Lond., 3-17.228

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.