Skip to main content
Article thumbnail
Location of Repository

A least-squares support vector machine approach to predict temperature drop accompanying a given pressure drop for the natural gas production and processing systems

By Mohammad-Ali Ahmadi, Mahdi Zeinali Hasanvand and Alireza Bahadori


Precise estimation of temperature variations throughout gas production systems can enhance designing the production amenities. Routine methods for determining the temperature profiles in gas production systems are based on the gas composition and flash calculations. However, if the gas compositions are not available, the gas production system can be modelled by employing a black-oil approach, which is also a method for calculating the oil/gas resources and for modelling the gas reservoir operation. Accordingly, for black-oil models and when the natural gas compositions are not accessible, applying robust predictive tools in this research is of high interest in natural production systems. The current study places emphasis on applying the predictive model based on the least- squares support vector machine (LSSVM) to estimate precisely the proper temperature drop associated with a given pressure drop throughout the natural gas production systems based on the black-oil approach to acquire an accurate result for the temperature drop of natural gas streams. Genetic algorithm was used to optimise hyper-parameters (γ and σ2) which are embedded in the LSSVM model. Using this method is simple and it accurately determines the temperature drop through the natural gas stream with minimum uncertainty

Topics: Pressure drop, temperature drop, gas stream, modelling, least- squares support vector machine, Environmental Sciences
Publisher: ePublications@SCU
Year: 2017
OAI identifier:
Provided by: ePublications@SCU
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.