Skip to main content
Article thumbnail
Location of Repository

A framework for the visualization of multidimensional and multivariate data

By Selan Rodrigues Dos Santos


High dimensionality is a major challenge for data visualization. Parameter optimization problems require an understanding of the behaviour of an objective function in an n-dimensional space around the optimum - this is multidimensional visualization and is a natural extension of the traditional domain of scientific visualization. Large numeric data tables with observations of many attributes require us to understand the relationship between these attributes - this is multivariate visualization and is an important aspect of information visualization. \ud \ud Common to both types of high dimensional visualization is a need to reduce the dimensionality for display. Although multidimensional and multivariate data are quite distinct, we show that a common approach to dimensionality reduction is possible. This framework makes a contribution to the foundation of the data visualization field, bringing both information and scientific visualization rather closer together. \ud \ud To address this problem we present a uniform approach designed for both abstract and scientific data. It is based on the reduction approach, which is realized through a filtering process that allows extraction of data subject to constraints on their position or value within an n-dimensional window, and on choice of dimensions for display. The framework has been put to proof through a visualization method called HyperCell, which has been applied to several case studies. The results are presented and the system evaluated.\u

Publisher: School of Computing (Leeds)
Year: 2004
OAI identifier:

Suggested articles


  1. [100] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall Inc., New Jersey, 1988.
  2. [101] T. J. Jankun-Helly and K.-L. M. Visualization exploration and encapsulation via a spreadsheet-like interface. IEEE Transaction on Visualization and Computer Graphics, 7(3):275–287, July-September 2001.
  3. [102] D. F. Jerding and J. T. Stasko. The information mural: a technique for displaying and navigating large information spaces. In Proceedings of the 1995 IEEE Symposium on Information Visualization, page 43. IEEE Computer Society, 1995.
  4. [103] M. C. Jones and R. Sibson. What is projection pursuit? Journal of the Royal Statistical Society. Series A (General), 150(1):1–37, 1987.
  5. [104] D. A. Henderson Jr. and S. K. Card. Rooms: the use of multiple virtual workspaces toreduce space contentionina window-basedgraphicaluserinterface. ACMTransactions on Graphics (TOG), 5(3):211–243, July 1986.
  6. [105] E. Kandogan. Star coordinates: A multi-dimensional visualization technique with uniform treatment of dimensions. In Proceedings of the IEEE Information Visualization Symposium, Hot Topics,, pages 4–8, 2000.
  7. [106] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis. John Wiley, New York, USA, 1990.
  8. [109] D. A. Keim. Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics, 7(1):100–107, January-March 2002.
  9. [110] D. A. Keim and H. Krigel. VisDB: Database exploration using multidimensional visualization. IEEE Computer Graphics and Applications, 14(5):40–49, September-October 1994.
  10. [111] P. R. Keller and M. M. Keller. Visual Cues, Practical Data Visualization. IEEE Press, 1993.
  11. [112] T. P. Kirkman. Note on an unanswered proze question. Cambridge and Dublin Math. J., 5:255–262, 1850.
  12. [113] B. Kleiner and J. A. Hartigan. Representing points in many dimensions by trees and castles. Journal of the American Statistical Association (in Applications), 76(374):260–269, 276, 1981.
  13. [116] R. R. Korfhage. To see, or not to see - is that the query? In Proceedings of the 14th annual international ACM SIGIR Conference on Research and development in information retrieval, pages 134–141. ACM Press, 1991.
  14. [12] A. Bartkowiak and A. Szustalewicz. The grand tour as a method for detecting multivariate outliers. Machine Graphics & Vision, 6:487–505, 1997.
  15. [121] R. Laurini and D. Thompson. Fundamentals of Spatial Information Systems. Academic Press, New York, NY, USA, 1992.
  16. [122] J. LeBlanc, M. O. Ward, and N. Wittels. Exploring n-dimensional databases. In A. Kaufman, editor, Proceedings of the First IEEE Conference on Visualization (VIS ’90), pages 230–237. IEEE Computer Society Press, 1990.
  17. [124] Y. K. Leung and M. D. Apperley. A review and taxonomy of distortion-oriented presentation techniques. ACM Transaction on Computer-Human Interaction, 1(2):126–160, June 1994.
  18. [13] W. Basalaj. Proximity visualization of abstract data. Technical Report 509, University of Cambridge Computer Laboratory, January 2001. url:
  19. [130] Macromedia. Macromedia director mx 2004. url:, 2004.
  20. [131] Wendy Martinez and Angel Martinez. Computational Statistics Handbook with MATLAB. Chapman and Hall, 2002.
  21. [132] R. Mazza. Diagnosis the state of the student’s knowledge in a web-based learning environment. In Proceedings of the 4th International Conference on New Educational Environments Lugano, pages 8–11, 2002.
  22. [134] R. Mazza and V. Dimitrova. Informing the design of a course data visualisator: an empirical study. In Proceedings of the 5th International Conference on New Educational Environments -(ICNEE 2003), pages 215–220, 2003.
  23. [135] R. Mazza and V. Dimitrova. Visualisingstudenttracking data to support instructors in web-based distance education. In Proceedings of the 13th International World Wide Web Conference (WWW 2004) - Educational Track, pages 17–22, 2004.
  24. [136] B. H. McCormick, T. A. DeFanti, and M. D. Brown. Visualization in scientific computing. ACM Computer Graphics, 21(6):1–14, 1987. Special Issue. [137] J. A. McDonald and W. Stuetzle. Painting multiple views of complex objects.
  25. [138] A. Mead. Review of the development of multidimensionalscaling methods. Statistician, 41(1):27–39, 1992.
  26. [14] B. G. Becker. Research report: Volume rendering for relational data. In Proceedings of the 1997 IEEE Symposium on Information Visualization, pages 87–91.
  27. [141] T. Mihalisin, J. Timlin, and J. Schwegler. Visualizing multivariate functions, data, and distributions. IEEE Computer Graphics and Applications, 11(3):28–35, 1991.
  28. [142] M. C. Minnotte and R. W. West. The data image: a tool for exploring high dimensional data sets. In Proceedings of the ASA Section on Statistical Graphics, pages 0–0, 1998. in press.
  29. [143] NAG IRIS Explorer. Web site, 2003.
  30. [144] J. A. Nelder and R. Mead. A simplexmethod for function minimization. Computer Journal, 7(4):308–313, January 1965.
  31. [145] C. M. Newton. Graphics: From alpha to omega in data analysis. In P. C. C. Wang, editor, Proceedings of the Symposium on Graphical Representation of Multivariate Data, pages 59–92, New York, NY, USA, 1978. Academic Press.
  32. [146] J. Nielsen. Hypertext and Hypermedia. Academic Press, 1990.
  33. [15] R. Becker andW.Cleveland. Brushingscatterplots. Technometrics,29(2):127–142, May 1987.
  34. [150] C. North and B. Shneiderman. Snap-together visualization: A user interface for coordinating visualizations via relational schemata. In Proceedings of Advanced Visual Interfaces 2000, pages 128–135, 2000.
  35. [153] A. Osyczka. Design Optimization, chapter Multicriterion Optimization for Engineering Design, pages 193–227. Academic Press, 1985.
  36. [154] Davis P. J. Interpolation and Approximation. Dover Publications, 1975.
  37. [155] R. S. Palais. The visualization of mathematics: Towards a mathematical exploratorium. Notices of the American Mathematical Society, 46(6):647–658, June/July 1999.
  38. [156] R. M. Pickett and G. G. Grinstein. Iconographic displays for visualizing multidimensional data. In Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics, volume 1, pages 514–519. IEEE Computer Society Press, 1988.
  39. [157] C. Plaisant, B. Milash, A. Rose, S. Widoff, and B. Shneiderman. Lifelines: visualizing personal histories. In Proceedings of the 1996 SIGCHI Conference on Human factors in computing systems, pages 221–227. ACM Press, 1996.
  40. [159] P. Rheingans and C. Landreth. Perceptual Issues in Visualization, chapter Perceptual principles for effective visualizations, pages 59–73. Springer, 1995.
  41. [16] R. A. Becker, S. G. Eick, and A. R. Wilks. Visualizing network data. IEEE Transactions on Visualization and Computer Graphics, 1(1):16–28, 1995. [17] J. Beddow. Shape coding of multidimensional data on a microcomputer display.
  42. [161] J. Roberts, editor. Coordinated and Multiple Views in Exploratory Visualization, 2003, 2003.
  43. [164] G. G. Robertson and J. D. Mackinlay. The document lens. In Proceedings of the 6th annual ACM symposium on User interface software and technology, pages 101–108. ACM Press, 1993.
  44. [165] G. G. Robertson, J. D. Mackinlay, and S. K. Card. Cone trees: animated 3d visualizations of hierarchical information. In Proceedings of the 1991 SIGCHI Conference on Human factors in computing systems, pages 189–194. ACM Press, 1991.
  45. [167] L. Rosenblum, R. A. Earnshaw, J. Encarnacao, H. Hagen, A. Kaufman, S. Klimenko, F. Post G. Nielson, and D. Thalmann, editors. Scientific Visualization -Advances and Challenges. Academic Press Limited, 1994.
  46. [168] H. H. Rosenbrock. An automatic method for finding the greatest or least value of a function. The Computer Journal, 3(3):175–184, October 1959.
  47. [169] G. Ross and M. Chalmers. A visual workspace for constructing hybrid multidimensional scaling algorithms and coordinating multiple views. Information Visualization, 2(4):247–257, December 2003.
  48. [171] M. Sarkar and M. H. Brown. Graphical fisheye views of graphs. In Proceedings of the 1992 SIGCHI Conference on Human factors in computing systems, pages 83–91. ACM Press, 1992.
  49. [176] B. Shneiderman. The eyes have it: A task by data type taxonomy for information visualizations. In Proceedings of the 1996 IEEE Symposium on Visual Languages, pages 336–343. IEEE Computer Society, 1996.
  50. [177] D. Shreiner, M. Woo, J. Neider, T. Davis, and D. Shreiner. OpenGL Programming Guide. Addison-Wesley Pub Co., fourth edition, November 2003.
  51. [178] J. H. Siegel, E. J. Farrel, R. M. Goldwyn, and H. P. Friedman. The surgical implication of physiologic patterns in myocardial infarction shock. Surgery, 72:126–141, 1972.
  52. [179] H. Siirtola. Direct manipulation of parallel coordinates. In Proceedings of 2000 IEEE InternationalConference on InformationVisualization,pages 373–378, 2000. [180] H. Sowizral, K. Rushforth, and M. Deering. The Java 3D(TM) API Specification.
  53. [18] R. Bellman. Adaptative Control Processes: A Guided Tour. Princeton University Press, 1961.
  54. [181] R. Spence. Information Visualization. ACM Press Books, 2001.
  55. [182] R. Spence. Rapid, serial and visual: a presentation technique with potential. Information Visualization, 1(1):13–19, March 2002.
  56. [183] R. Spence. Sensitive encoding to support information space navigation: a design guideline. Information Visualization, 1:120–129, 2002.
  57. [184] R. Spence and M. Apperley. Database navigation: an office environment for the professional. Behaviour and Information Technology, 1(1):34–54, 1982.
  58. [188] T. Strothotte, editor. Computational visualization: Graphics, abstraction, and interactivity. Springer, 1998. [189] D. Sunday. About lines and distance of a point to a line (2d & 3d).
  59. [190] Leah A. Sutton. The principle of vicarious interaction in computer-mediated communications. InternationalJournal of Educational Telecommunications, 7(3):223– 242, 2001.
  60. [191] D. F. Swayne, D. Cook, and A. Buja. Xgobi: Interactive dynamic data visualization in the x window system. Journal of Computational and Graphical Statistics, 7(1):113–130, 1998.
  61. [192] M. Tory and T. M¨ oller. A model-based visualization taxonomy. Technical Report CMPT-TR2002-06, ComputingScience Department, SimonFraser University, 2002.
  62. [193] M. Tory and T.M¨ oller. Humanfactors in visualizationresearch. IEEE Transactions on Visualization and Computer Graphics(TVCG), 10(1):72–84, January-February 2004.
  63. [194] D. Tost, A. Puig, and M. Ferre. Visual clues in multimodal rendering. Technical Report LSI-02-38-R, Departament de Matemtica Aplicada i Anlisi - Universitat de Barcelona, May 22 2002.
  64. [195] E. R. Tufte. Envisioning Information. Graphic Press, Cheshire, Connecticut, 1990.
  65. [196] E. R. Tufte. The Visual Display of Quantitative Information. Graphic Press, Cheshire, Connecticut, second edition, September 2001. (first edited in 1983).
  66. [199] R. van Liere and J. J. van Wijk. Visualization of multi-dimensionalscalar functions using hyperslice. CWI Quarterly, 7(2):147–158, 1994.
  67. [2] C. Ahlberg, C. Williamson, and B. Shneiderman. Dynamic queries for information exploration: an implementation and evaluation. In Proceedings of the 1992 SIGCHI Conference on Human factors in computing systems, pages 619–626.
  68. [200] J. J. van Wijk and R. van Liere. Hyperslice: visualization of scalar functions of manyvariables. InD.Bergeron andG.Nielson, editors,Proceedingofthe 4thIEEE Conference on Visualization (VIS ’93), pages 119–125. IEEE Computer Society Press, 1993.
  69. [201] A. Walestein. Cognitive Support in Software Tools: a Distributed Cognition Framework. PhD thesis, Computer Science Department, Simon Fraser University, Burnaby, B.C., Canada, 2002.
  70. [202] N. Walliman and B. Baiche. Your Research Project - a guide step-by-step for the first-time research. SAGE Publications, 2001.
  71. [203] J. Walton. Nag’s iris explorer. In C. R. Johnson and C. D. Hansem, editors, Visualization Handbook. Academic Press, 2004. To appear. url=
  72. [204] M. Q. Wang Baldonado, A. Woodruff, and A. Kuchinsky. Guidelines for using multiple views in information visualization. In Proceedings of the working Conference on advanced visual interfaces, pages 110–119. ACM Press, 2000.
  73. [205] M. O. Ward. Xmdvtool: integrating multiple methods for visualizing multivariate data. In Proceedings of the 5th IEEE Conference on Visualization (VIS ’94), pages 326–333. IEEE Computer Society Press, 1994.
  74. [206] C. Ware. Information Visualization: Perception for Design. Morgan Kaufmann Publishers, 2000.
  75. [207] WebCT. Web site, 2004.
  76. [212] P. C. Wong and R. D. Bergeron. Scientific Visualization - Overviews, Methodologies and Techniques, chapter 30 Years of MultidimensionalMultivariate Visualization, pages 3–33. IEEE Computer Society Press, 1997.
  77. [213] J. Wood, H. Wright, and K. Brodlie. Collaborative visualization. In Proceedings of the 8th Conference on Visualization (VIS ’97), pages 253–260. IEEE Computer Society Press, 1997.
  78. [214] H. Wright, K. Brodlie, and T. David. Navigating high-dimensional spaces to support design steering. In T. Ertl, B. Hamann, and A. Varshney, editors, Proceedings of IEEE Visualization 2000, pages 291–296. IEEE Computer Society Press, 2000.
  79. [216] W. Wright. Research report: information animation applications in the capital markets. In Proceedings of the 1995 IEEE Symposium on Information Visualization, page 19. IEEE Computer Society, 1995.
  80. [22] R. K. Brath. Effective information visualization: Guidelines and metrics for 3d interactive representations of business data. Master’s thesis, Computer Science Department - University of Toronto, 1999.
  81. [23] K. Brodlie. A classification scheme for scientific visualization. In R. E. Earnshaw and D. Watson, editors, Animation and scientific visualization - tools and applications, chapter 8, pages 125–140. Academic Press Ltd, 1993.
  82. [24] K. W. Brodlie. A new direction set method for unconstrained minimizationwithout evaluating derivatives. J. Inst. Maths Applics, 15:385–396, 1975. [25] K. W. Brodlie, L. Carpenter, R. A. Earnshaw, J. R. Gallop, R. J. Hubbold, A. M.
  83. [27] A. Buja and D. Asimov. Grand tour methods: An outline. In D. M. Allen, editor, Proceedings of the 17th Symposium on the Interface Between Computing Science and Statistics, pages 63–67. Elsevier, 1986.
  84. [28] A. Buja, B. Cook, D. Asimov, and D. Hurley. Theory and computational methods for dynamic projections in high-dimensional data visualization, 1996. [29] A. Buja, D. Cook, and D. Swayne. Interactive high-dimensional data visualization.
  85. [3] C. Ahlberg and E. Wistrand. Ivee: an environment for automatic creation of dynamic queries applications. In Conference companion on Human factors in computing systems, pages 15–16. ACM Press, 1995.
  86. [32] S. Card, J. Mackinlay, and B. Shneiderman, editors. Readings in Information Visualization - Using Vision to Think. Morgan Kaufmann Publishers, Inc., 1999.
  87. [33] S. K. Card and J. Mackinlay. The structure of the information visualization design space. In Proceedings of the 1997 IEEE Symposium on Information Visualization, pages 92–99. IEEE Computer Society Press, 1997.
  88. [34] S. K. Card, J. D. Mackinlay, and B. Shneiderman, editors. Readings in Information Visualization - Using Vision to Think, chapter 1: Information Visualization, pages 1–34. Morgan Kaufmann Publishers, Inc., 1999.
  89. [35] S. K. Card, G. G. Robertson, and W. York. The webbook and the webforager: An information workspace for the world-wide web. In Proceedings of the 1996 SIGCHI Conference on Human Factors in Computing Systems, pages 111–117.
  90. [36] M. S. T. Carpendale, D. J. Cowperthwaite, and F. D. Fracchia. IEEE computer graphics and applications, specialissue on informationvisualization. IEEE Journal Press, 17(4):42–51, July 1997.
  91. [37] M. A. Carreira-Perpi˜ n´ an. A review of dimension reduction techniques. Technical report cs-96-09, Dept. of Computer Science, University of Sheffield, 1996.
  92. [38] M. Chalmers. Tutorial: Design and perception in informationvisualisation. In 25th International Conference on Very Large Data Bases, 1999.
  93. [39] J. M. Chambers, W. S. Cleveland, B. Kleiner, and P.A. Tukey. Graphical Methods for Data Analysis. Chapman and Hall, New York, 1976.
  94. [4] B. Alpern and L. Carter. The hyperbox. In G. M. Nielson and L. Rosenblum, editors, Proceedings of the 2nd IEEE Conference on Visualization (VIS ’91), pages 133–139, 418. IEEE Computer Society Press, 1991.
  95. [40] J. X. Chen and S. Wang. Data visualization: Parallel coordinates and dimension reduction. Computing in Science & Engineering, 3(5):110–113, September-October 2001.
  96. [41] H. Chernoff. The use of faces to represent points in k-dimensional space graphically. Journal of the American Statistical Association, 68:361–368, 1973.
  97. [44] E. H. H. Chi, P. Barry, J. Riedl, and J. Konstan. A spreadsheet approach to information visualization. In Proceedings of the 1997 IEEE Symposium on Information Visualization, page 17. IEEE Computer Society, 1997.
  98. [45] R. Chimera. Value bars: an information visualizationand navigation tool for multiattribute listings. In Proceedings of the 1992 SIGCHI Conference on Human factors in computing systems, pages 293–294. ACM Press, 1992.
  99. [46] M. C. Chuah, S. F. Roth, J. Mattis, and J. Kolojejchick. SDM: malleable information graphics. In Proceedings of the 1995 IEEE Symposium on Information Visualization, page 36. IEEE Computer Society, 1995.
  100. [47] W. S. Cleveland. The elements of graphing data. Wadsworth Advanced Books and Software, 1985.
  101. [48] W. S. Cleveland. Visualizing Data. Hobart Press, AT&T Bell Laboratories, NJ, USA, 1993.
  102. [49] W. S. Clevelandand M.E. McGill, editors. Dynamic GraphicsforStatistics. Statistics/probability series. Wadsworth and Brooks/Cole Inc., 1988.
  103. [5] D. F. Andrews. Plots of high-dimensional data. Biometrics, 29:125–136, 1972.
  104. [50] W. S. Cleveland, M. E. McGill, and R. McGill. The shape parameter of a twovariable graph. Journal of the American StatisticalAssociation, 83:289–300, 1988. [51] W. G. Cochran. Sampling Techniques. Wiley Series in Probability and Statistics.
  105. [52] M. Cohen and K. Brodlie. Focus and context for volume visualization. In Proceedings Theory and Practice of Computer Graphics 2004, pages 32–39. IEEE Computer Society Press, 2004.
  106. [53] M. B. Cohen, C. J. Colbourn, L. A. Ives, and A. C. H. Ling. Kirkman triple systems of orders 21 and 27. Mathematics of Computation, 71(238):873–881, November 2002.
  107. [56] T. F. Cox and M. A. A. Cox. Multidimensional Scaling,. Chapman & Hall,, London, 1994.
  108. [59] T. A. DeFanti, M. D. Brown, and B. H. McCormick. Visualization: Expanding scientific and engineering research opportunities. Computer, 22(8):12–16, 22–25, 1989.
  109. [6] K. Andrews. Case study: Visualising cyberspace: information visualisation in the harmony internet browser. In Proceedings of the 1995 IEEE Symposium on Information Visualization, page 97. IEEE Computer Society, 1995.
  110. [60] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollisand. Graph drawing: algorithms for the visualization of graphs. Pearson Education, first edition, 1998.
  111. [61] P. Diaconis and J. H. Friedman. M and n plots. In H. Rizvi, J. Rustagi, and D. Siegmund, editors, Recent Advances in Statistics: Papers in Honor of Herman Chernoff on his Sixtieth Birthday, pages 425–447. Academic Press, 1983.
  112. [63] M. Egenhofer and J. Richards. Exploratory access to geographic data based on the map-overlay metaphor. Journal of Visual Languages and Computing, 4(2):105– 125, 1993.
  113. [64] S. G. Eick. Data visualization sliders. In Proceedings of the 7th annual ACM symposium on User interface software and technology, pages 119–120. ACM Press, 1994.
  114. [67] S. K. Feiner and C. Beshers. Worlds within worlds: Metaphors for exploring ndimensional virtual worlds. In Proceedings of the Third Annual ACM SIGGRAPH Symposium on User Interface Software and Technology, pages 76–83. ACM Press, 1990.
  115. [68] R. A. Fisher. The use of multiple measurements in axonomic problems. Annals of Eugenics, 7:179–188, 1936.
  116. [69] M. A. Fisherkeller, J. H. Friedman, and J. W. Tukey. Prim9, an interactive multidimensional data display and analysis system. In Dynamic Graphics for Statistics, Statistics/Probability Series, pages 91–109. The Wadsworth & Brooks/Cole, 1975.
  117. [7] M. Ankerst, S. Berchtold, and D. A. Keim. Similarity clustering of dimensions for an enhanced visualization of multidimensional data. In Proceedings of the 1998 IEEE Symposium on Information Visualization, pages 52–60, 153. IEEE Computer Society, 1998.
  118. [71] Institute for Manufacturing Department of Engineering. Decision support tools -polar chart. url:,2004.
  119. [72] J. H. Friedman and J. W. Tukey. A projection pursuit algorithm for exploratory data analysis. IEEE Transactions on Computers, 23:881–889, 1977.
  120. [78] G. Geisler. Making information more accessible: A survey of information visualization applications and techniques.,February 1998.
  121. [79] N. Gershon and S. G. Eick. Information visualisation. IEEE Computer Graphics Application, 17(4):29–31, 1997.
  122. [81] M. Graham and J. Kennedy. Using curves to enhance parallel coordinate visualisations. In Proceedings of the Seventh International Conference on Information Visualization, pages 10–16. IEEE Computer Society, 2003.
  123. [82] M. Green. Toward a perceptual science of multidimensional data visualization: Bertin and beyond. url:,1998. Copyright by ERGO/GERO.
  124. [83] G. Grinstein, A. Inselberg, and S. Laskowski. Key problems and thorny issues in multidimensional visualization. In Proceedings of the 9th IEEE Conference on Visualization (VIS ’98), pages 505–506. IEEE Computer Society Press, 1998.
  125. [84] G. Grinstein, T. Mihalisin, H. Hinterberger, and A. Inselberg. Visualizing multidimensional (multivariate) data and relations. In Proceedings of the 5th IEEE Conference on Visualization (VIS ’94), pages 404–409. IEEE Computer Society Press, 1994.
  126. [9] D. Asimov. The grand tour: A tool for viewing multidimensional data. SIAM Journal on Scientific and Statistical Computing, 6(1):128–143, 1985.
  127. [90] A. J. Hanson. Graphics Gems V, chapter Rotations for N-Dimensional Graphics, pages 55–64. Academic Press, 1995.
  128. [92] R. J. Hendley, N. S. Drew, A. M. Wood, and R. Beale. Case study: Narcissus: visualising information. In Proceedings of the 1995 IEEE Symposium on Information Visualization, page 90. IEEE Computer Society, 1995.
  129. [93] B. Hibbard. Top ten visualization problems. SIGGRAPH Computer Graphics Newsletter - VisFile, 33(2):21–22, 1999.
  130. [94] P. Hoffman, G. Grinstein, K. Marx, L. Grosse, and E. Stanley. DNA visual and analytic data mining. In Proceedings of the 8th IEEE Conference on Visualization (VIS ’97), pages 437–441, Ney York, NY, USA, 1997. ACM Press and IEEE Computer Society Press.
  131. [95] D. Howe. The free on-line dictionary of computing. url:, 1993. 213BIBLIOGRAPHY [96] P. J. Huber. Projection pursuit. Annals of Statistics, 13(2):435–475, June 1985.
  132. [97] A. Inselberg and B. Dimsdale. Parallel coordinates: A tool for visualizing multidimensional geometry. In A. Kaufman, editor, Proceedings of the First IEEE Conference on Visualization (VIS ’90), pages 361–370. IEEE Computer Society Press, 1990.
  133. [98] V. Interrante. Harnessing natural textures for multi-variate visualization. IEEE Computer Graphics and Applications, 20(6):6–11, 2000.
  134. [99] J. E. Jackson. A user’s guide to principal components. Wiley series in probability and mathematical statistics. John Wiley & Sons, Inc., 1991.
  135. ACM Press, 1992.
  136. ACM Press, 1996.
  137. ACM Transaction on graphics, 11(1):92–99, 1992.
  138. Addison-Wesley Pub Co., second edition, May 2000.
  139. Bonneau, S. Hahmann, and C.D. Hansen, editors, Proceedings of the Joint Eurographics/IEEE TVCG Symposium on Data Visualization 2003, pages 19–28. IEEE Press/ACM Press, 2003. 225
  140. Chemometrics and Intelligent Laboratory Systems, 22:147–153, 1994. [127] The Numerical Algorithms Group Ltd. Iris explorer module writer’s guide. url:
  141. Communications of the ACM, 10(8):469–473, 1967. [149] C. North and B. Shneiderman. A taxonomy of multiple window coordinations.
  142. IEEE Computer Society Press, 1992.
  143. IEEE Computer Society Press, 1997.
  144. IEEE Transactions on Visualization and Computer Graphics, pages 150–159, 2000.
  145. In A. Kaufman, editor, Proceedings of the First IEEE Conference on Visualization (VIS ’90), pages 238–246, 478. IEEE Computer Society Press, 1990.
  146. In G. Hegron and D. Thalmann, editors, Computer Animation and Simulation ’91, Eurographics Technical Report Series, pages 115–127, 1991. Proceedings of the Eurographics Workshop in Vienna, Austria, September 1–2, 1991.
  147. In Proceedings of the European Conference on Object Oriented Programming (ECOOP/OOPSLA ’90), pages 245–257. ACM Press, 1990.
  148. In R. J. Howlett and L. C. Jain, editors, Proceedings of the Fourth International Conference on Knowledge-Based Intelligent Engineering Systems & Allied Technologies, volume 1, pages 44–55. University of Brighton, IEEE Press, 2000.
  149. Journal of Computational and Graphical Statistics, 4(3):155–172, 1995.
  150. Journal of Computational and Graphical Statistics, 5(1):78–99, 1996.
  151. Mumford, C. D. Osland, and P. Quarendon. Scientific visualization: techniques and applications. Springer-Verlag New York, Inc., 1992.
  152. Olson, editors, Proceedings of the 1994 SIGCHI Conference on Human factors in computing systems, volume 1, pages 313–317. ACM Press, 1994.
  153. Rosson, and J. Nielsen, editors, Proceedings of the 1995 SIGCHI Conference on Human factorsin computingsystems, pages 401–408.ACM Press/Addison-Wesley Publishing Co., 1995.
  154. Society Press, 1990.
  155. Technical report, University of Maryland, College Park, Dept. of Computer Science, 1997.
  156. The Guildford Press, 1995.
  157. url= 0102/algorithm 0102.htm, February 2001.
  158. W.H. Freeman & Company, New York, NY, third edition, 1996.
  159. Wiley Text Books, third edition, July 1977.

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.