Theoretical study of the design of a catalyst for para to ortho hydrogen conversion


The theory of Petzinger and Scalapino (1973) was thoroughly reviewed, and all of the basic equations for paramagnetic para to ortho hydrogen catalysis re-derived. There are only a few minor phase errors and errors of omission in the description of the theory. Three models (described by Petzinger and Scalapino) for the rate of para to ortho H2 catalysis were worked out, and uniform agreement obtained to within a constant factor of 2 pi. The analytical methods developed in the course of this study were then extended to two new models, which more adequately describe the process of surface catalysis including transfer of hydrogen molecules onto and off of the surface. All five equations for the para to ortho catalytic rate of conversion are described. The two new equations describe the catalytic rate for these models: H2 on the surface is a 2-D gas with lifetime tau; and H2 on the surface is a 2-D liquid undergoing Brownian motion (diffusion) with surface lifetime tau

Similar works

Full text


NASA Technical Reports Server

Provided a free PDF time updated on 8/3/2016View original full text link

This paper was published in NASA Technical Reports Server.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.