Article thumbnail

Equations of hyperelliptic Shimura curves

By Santiago Molina Blanco

Abstract

We describe a method for computing equations of hyperelliptic Shimura curves attached to indefinite quaternion algebras over Q and Atkin–Lehner quotients of them. It exploits Cerednik–Drinfeld 's non-archimedean uniformization of Shimura curves, a formula of Gross and Zagier for the endomorphism ring of Heegner points over Artinian rings and the connection between Ribet's bimodules and the specialization of Heegner points, as introduced in Molina [‘Ribet bimodules and specialization of Heegner points’, Israel Journal of Mathematics]. We provide a list of equations of Shimura curves and quotients of them obtained by our method that had been conjectured by KuriharaPostprint (published version

Topics: Àrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals, Àrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra, Galois theory, Curves, Algebraic, Differential equations, Integrals, Hyperelliptic, Corbes algebraiques, Galois, Teoria de, Equacions diferencials
Year: 2012
OAI identifier: oai:upcommons.upc.edu:2117/86252
Journal:

Suggested articles


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.