Skip to main content
Article thumbnail
Location of Repository

Structurally Diverse Copper Complexes Bearing NNO-Tridentate Schiff-Base Derivatives as Efficient Catalysts for Copolymerization of Carbon Dioxide and Cyclohexene Oxide

By Chen-Yen Tsai, Bor-Hunn Huang, Mon-Wei Hsiao, Chu-Chieh Lin and Bao-Tsan Ko


Structurally diverse copper acetate complexes based on NNO-tridentate Schiff-base ligands were synthesized and characterized as mono-, di-, and trinuclear complexes with respect to varied ancillary ligands. Treatment of the ligand precursors (L(1)-H = 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-4-methylphenol, L(2)-H = 4-chloro-2-(1-((2-(dimethylamino)ethyl)imino)ethyl)phenol, and L(3)-H = 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-5-methylphenol) with Cu(OAc)2·H2O (1 equiv) in refluxing ethanol afforded five-coordinate mono- or bimetallic copper complexes ([(L(1))Cu(OAc)(H2O)] (1); [(L(2))Cu(OAc)(H2O)] (2); [(L(3))2Cu2(OAc)2] (3)) in high yields. Dinuclear copper acetate analogue [(L(1))2Cu2(OAc)2] (4) resulted from treatment of L(1)-H as the ligand precursor in refluxing anhydrous MeOH with equimolar proportions of metal acetate salt under a dry nitrogen atmosphere. However, a trinuclear complex, [(L(4))2Cu3(OAc)4] (5), was obtained on utilizing 2-(1-((2-(dimethylamino)ethyl)imino)ethyl)-5-methoxyphenol (L(4)-H) as the proligand under the same synthetic route of 1-3; this complex was also synthesized in the reaction of L(4)-H and copper(II) acetate monohydrate in the ratio of 2:3, giving a quantitative yield. All complexes are active catalysts for copolymerization of cyclohexene oxide (CHO) and CO2 without cocatalysts. In particular, dinuclear Cu complex 3 performed satisfactorily to produce polycarbonates with controllable molecular weights and high carbonate linkages. These copper complexes are the first examples that are effective for both CO2/CHO copolymerization and formation of polymers in a controlled fashion

Topics: Amides, Carbon Dioxide, Catalysis, Copper, Cyclohexenes, Imines, Models, Molecular, Molecular Structure, Organometallic Compounds, Phenols, Polymerization, Polymers, Schiff Bases
Year: 2015
DOI identifier: 10.1021/ic5002122
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.