Skip to main content
Article thumbnail
Location of Repository

Vapor–Solid Growth of p-Te/n-SnO2Hierarchical Heterostructures and Their Enhanced Room-Temperature Gas Sensing Properties

By Yung-Chiun Her, Bu-Yu Yeh and Sing-Lin Huang


We have synthesized brushlike p-Te/n-SnO2 hierarchical heterostructures by a two-step thermal vapor transport process. The morphologies of the branched Te nanostructures can be manipulated by adjusting the source temperature or the argon flow rate. The growth of the branched Te nanotubes on the SnO2 nanowire backbones can be ascribed to the vapor-solid (VS) growth mechanism, in which the inherent anisotropic nature of Te lattice and/or dislocations lying along the Te nanotubes axis should play critical roles. When exposed to CO and NO2 gases at room temperature, Te/SnO2 hierarchical heterostructures changed the resistance in the same trend and exhibited much higher responses and faster response speeds than the Te nanotube counterparts. The enhancement in gas sensing performance can be ascribed to the higher specific surface areas and formations of numerous Te/Te or TeO2/TeO2 bridging point contacts and additional p-Te/n-SnO2 heterojunctions

Year: 2015
DOI identifier: 10.1021/am5012518
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.