Skip to main content
Article thumbnail
Location of Repository

Highly sensitive glucose biosensor based on Au–Ni coaxial nanorod array having high aspect ratio

By Che-Wei Hsu and Gou-Jen Wang


An effective glucose biosensor requires a sufficient amount of GOx immobilizing on the electrode surface. An electrode of a 3D nanorod array, having a larger surface-to-volume ratio than a 2D nanostructure, can accommodate more GOx molecules to immobilize onto the surface of the nanorods. In this study, a highly sensitive Au-Ni coaxial nanorod array electrode fabricated through the integration of nano electroforming and immersion gold (IG) method for glucose detection was developed. The average diameter of the as-synthesized Ni nanorods and that of the Au-Ni nanorods were estimated to be 150 and 250 nm, respectively; both had a height of 30 μm. The aspect ratio was 120. Compared to that of a flat Au electrode, the effective sensing area was enhanced by 79.8 folds. Actual glucose detections demonstrated that the proposed Au-Ni coaxial nanorod array electrode could operate in a linear range of 27.5 μM-27.5mM with a detection limit of 5.5μM and a very high sensitivity of 769.6 μA mM(-1)cm(-2). Good selectivity of the proposed sensing device was verified by sequential injections of uric acid (UA) and ascorbic acid (AA). Long-term stability was examined through successive detections over a period of 30 days

Topics: Glucose biosensor, High sensitivity, High-aspect-ratio Au–Ni coaxial nanorod array, Immersion gold, Biosensing Techniques, Electrodes, Enzymes, Immobilized, Glucose, Glucose Oxidase, Gold, Limit of Detection, Models, Molecular, Nanotubes, Nickel
Year: 2015
DOI identifier: 10.1016/j.bios.2014.01.023
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.