Skip to main content
Article thumbnail
Location of Repository

Direct visualization of the quadruplex structures in human chromosome using FRET: Application of quadruplex stabilizer and duplex-binding fluorophore

By Yung-Chieh Chan, Jyun-Wei Chen, Sheng-Yuan Su and Cheng-Chung Chang


The G-quadruplex structures in the telomere of a chromosome can not only protect the internal chromosome sequences by preventing the improper activation of DNA-damage-response pathways but also become targets for cancer treatments. In this manuscript, we wish to prove the existence of G-quadruplex structure formation, rather than G-quadruplex sequence, in chromosome of human cancer cells. Based on our studies, the fluorescent mapping of G-quadruplex structures in the chromosome is possible with the combination of G-quadruplex targeting fluorophore (BMVC, 3, 6-bis-(1-methyl-4-vinylpyridinium)-carbazole diiodide) and duplex-binding fluorophores (Hoechst or propidium iodide). By means of an applicable incubation time between cell cycle period and proper staining procedure to the chromosome, FRET (fluorescence resonance energy transfer) between G-quadruplex targeting fluorophore and duplex-binding fluorophore can increase the signal contrast of the fluorescent color and the fluorescent mapping of quadruplex structures can be easily observed using fluorescence microscopy. These observations are further supported by basic spectral analysis, titration binding assay, gel electrophoresis binding competition assay and confocal microscopy

Topics: G-quadruplexes, Telomere, Chromosome, Fluorescent mapping, Fluorescence resonance energy transfer (FRET)
Year: 2014
DOI identifier: 10.1016/j.bios.2013.03.041
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.