Skip to main content
Article thumbnail
Location of Repository

Applying the self-organization feature map (SOM) algorithm to AE-based tool wear monitoring in micro-cutting

By Chia-Liang Yen, Ming-Chyuan Lu and Jau-Liang Chen

Abstract

This study applies a self-organization feature map (SOM) neural network to acoustic emission (AE) signal-based tool wear monitoring for a micro-milling process. An experiment was set up to collect the signal during cutting for the system development and performance analysis. The AE signal generated on the workpiece was first transformed to the frequency domain by Fast Fourier transformation (FFT), followed by feature extraction processing using the SOM algorithm. The performance verification in this study adopts a learning vector quantification (LVQ) network to evaluate the effects of the SOM algorithm on the classification performance for tool wear monitoring. To investigate the improvement achieved by the SOM algorithms, this study also investigates cases applying only the LVQ classifier and based on the class mean scatter feature selection (CMSFS) criterion and LVQ. Results show that accurate classification of the tool wear can be obtained by properly selecting features closely related to the tool wear based on the CMSFS and frequency resolution of spectral features. However, the SOM algorithms provide a more reliable methodology of reducing the effect on the system performance contributed by noise or variations in the cutting system

Topics: Tool condition monitoring, SOM, Acoustic emission, LVQ, Micro-cutting tool
Year: 2014
DOI identifier: 10.1016/10.1007
OAI identifier: oai:ir.lib.nchu.edu.tw:11455/84898
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1016/10.1... (external link)
  • http://hdl.handle.net/11455/84... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.