Skip to main content
Article thumbnail
Location of Repository

Transition from ectothermy to endothermy: the development of metabolic capacity in a bird (Gallus gallus)

By Frank Seebacher, Tonia S Schwartz and Michael B Thompson


The evolution of endothermy is one of the most significant events in vertebrate evolution. Adult mammals and birds are delineated from their early ontogenetic stages, as well as from other vertebrates, by high resting metabolic rates and consequent internal heat production. We used the embryonic development of a bird (Gallus gallus) as a model to investigate the metabolic transition between ectothermy and endothermy. Increases in aerobic capacity occur at two functional levels that are regulated independently from each other: (i) upregulation of gene expression; and (ii) significant increases in the catalytic activity of the main oxidative control enzymes. Anaerobic capacity, measured as lactate dehydrogenase activity, is extremely high during early development, but diminishes at the same time as aerobic capacity increases. Changes in lactate dehydrogenase activity are independent from its gene expression. The regulatory mechanisms that lead to endothermic metabolic capacity are similar to those of ectotherms in their response to environmental change. We suggest that the phylogenetic occurrence of endothermy is restricted by its limited selective advantages rather than by evolutionary innovation

Topics: Research Article
Publisher: The Royal Society
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.