Location of Repository

Rapid, agonist-induced desensitization of alpha 2-autoreceptors modulating transmitter release.

By S Boehm, S Huck, K Schwarz, E Agneter, H Drobny and E A Singer


1. The release of previously incorporated [3H]-noradrenaline was investigated in cultures of dissociated chick or rat sympathetic neurones and in cerebrocortical slices from neonatal or adult rats. Noradrenaline, in the presence of 10 mumol l-1 of the uptake inhibitor, cocaine, or the selective alpha 2-adrenoceptor agonist, 5-bromo-N-(4,5-dihydro-1H-imidazol-2-yl)-6-quinoxalinamine (UK 4,304), was applied for different periods of time in order to detect a possible time-dependence of the alpha 2-adrenoceptor-mediated inhibition of electrically evoked tritium outflow. 2. In chick sympathetic neurones, stimulation-evoked overflow was reduced to 30%, 42%, or 56% of control when noradrenaline (1 mumol l-1) was present for 2, 8, or 16 min, respectively. Likewise, UK 14,304 (1 mumol l-1) present for these periods of time reduced 3H overflow to 35%, 51%, and 53% of control, respectively. Addition of 1 nmol l-1 to 10 mumol l-1 UK 14,304 for either 2 or 16 min did not produce significantly different IC50 values, but the inhibitory effects were smaller with 16 min as compared to 2 min exposure at concentrations > or = 10 nmol l-1. 3. In rat sympathetic neurones, noradrenaline (100 nmol l-1) reduced stimulation-evoked overflow to 33%, 56%, or 57% of control, when present for 2, 8, or 16 min, respectively. Addition of UK 14,304 (1 mumol l-1) for these periods of time caused inhibition to 11%, 41%, and 46% of control.(ABSTRACT TRUNCATED AT 250 WORDS

Topics: Research Article
OAI identifier: oai:pubmedcentral.nih.gov:1510335
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.