Article thumbnail

Earthworm effects on plant growth do not necessarily decrease with soil fertility

By K.R. Laossi, A. Ginot, D.C. Noguera, M. Blouin and Sébastien Barot


Earthworms are known to generally increase plant growth. However, because plant-earthworm interactions are potentially mediated by soil characteristics the response of plants to earthworms should depend on the soil type. In a greenhouse microcosm experiment, the responsiveness of plants (Veronica persica, Trifolium dubium and Poa annua) to two earthworm species (in combination or not) belonging to different functional groups (Aporrectodea. caliginosa an endogeic species, Lumbricus terrestris an anecic species) was measured in term of biomass accumulation. This responsiveness was compared in two soils (nutrient rich and nutrient poor) and two mineral fertilization treatments (with and without). The main significant effects on plant growth were due to the anecic earthworm species. L. terrestris increased the shoot biomass and the total biomass of T. dubium only in the rich soil. It increased also the total biomass of P. annua without mineral fertilization but had the opposite effect with fertilization. Mineral fertilization, in the presence of L. terrestris, also reduced the total biomass of V. persica. L. terrestris did not only affect plant growth. In P. annua and V. persica A. caliginosa and L. terrestris also affected the shoot/root ratio and this effect depended on soil type. Finally, few significant interactions were found between the anecic and the endogeic earthworms and these interactions did not depend on the soil type. A general idea would be that earthworms mostly increase plant growth through the enhancement of mineralization and that earthworm effects should decrease in nutrient-rich soils or with mineral fertilization. However, our results show that this view does not hold and that other mechanisms are influential

Topics: Earthworms, L. terrestris, A. caliginosa, Plant growth, Soil type, Nutrient availability, Shootroot ratio
Year: 2010
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.documentation.ird.f... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.