Multinuclear magnesium hydride clusters: Selective reduction and catalytic hydroboration of pyridines

Abstract

Multinuclear magnesium hydride complexes react with pyridine, forming 1,2- and 1,4-dihydropyridide (DHP) complexes. Reaction of PARA3Mg8H10 with pyridine initially formed 1,2-DHP and 1,4-DHP product mixtures which converted at 60 °C into PARA-[Mg(1,4-DHP)]2·(pyridine)2 (PARA = [(2,6-iPr2C6H3)NC(Me)C(H)C(Me)N]2-(p-C6H4)). Reaction of [NN-(MgH)2]2 with pyridine gave exclusive formation of the 1,2-DHP product NN-[Mg(1,2-DHP)]2·(pyridine)2 (NN = [(2,6-iPr2C6H3)NC(Me)CHC(Me)N-]2). Both products were characterized by crystal structure determinations. The unusual preference for 1,2-addition is likely caused by secondary intramolecular interactions based on mutual communication between the metal coordination geometries: an extended network of C-H···C π-interactions and π-stacking interactions is found. Whereas PARA3Mg8H10 is hardly active in magnesium-catalyzed hydroboration of pyridines with pinacolborane, [NN-(MgH)2]2 shows efficient coupling. However, the regioselectivity of the stoichiometric reaction is not translated to the catalytic regime. This result is taken as an indication for a potential alternative mechanism in which magnesium hydride intermediates do not play a role but the hydride is transferred from an intermediate borate complex

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.