Skip to main content
Article thumbnail
Location of Repository

The Haber Bosch-harmful algal bloom (HB-HAB) link

By P.M. Glibert, R. Maranger, D.J. Sobota and Lex Bouwman

Abstract

Large-scale commercialization of the Haber–Bosch (HB) process is resulting in intensification of nitrogen (N) fertilizer use worldwide. Globally N fertilizer use is far outpacing that of phosphorus (P) fertilizer. Much of the increase in N fertilizers is also now in the form of urea, a reduced form of N. Incorporation of these fertilizers into agricultural products is inefficient leading to significant environmental pollution and aquatic eutrophication. Of particular concern is the increased occurrence of harmful algal blooms (HABs) in waters receiving nutrient enriched runoff. Many phytoplankton causing HABs have physiological adaptive strategies that make them favored under conditions of elevated N : P conditions and supply of chemically reduced N (ammonium, urea). We propose that the HB-HAB link is a function of (1) the inefficiency of incorporation of N fertilizers in the food supply chain, the leakiness of the N cycle from crop to table, and the fate of lost N relative to P to the environment; and (2) adaptive physiology of many HABs to thrive in environments in which there is excess N relative to classic nutrient stoichiometric proportions and where chemically reduced forms of N dominate. The rate of HAB expansion is particularly pronounced in China where N fertilizer use has escalated very rapidly, where soil retention is declining, and where blooms have had large economic and ecological impacts. There, in addition to increased use of urea and high N : P based fertilizers overall, escalating aquaculture production adds to the availability of reduced forms of N, as does atmospheric deposition of ammonia. HABs in both freshwaters and marginal seas in China are highly related to these overall changing N loads and ratios. Without more aggressive N control the future outlook in terms of HABs is likely to include more events, more often, and they may also be more toxic

Topics: nitrogen, eutrophication, nitrogen fertilizer, N : P ratio, cyanobacteria, dinoflagellates, harmful algal blooms
Year: 2014
OAI identifier: oai:dspace.library.uu.nl:1874/302885
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dspace.library.uu.nl:80... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.