Skip to main content
Article thumbnail
Location of Repository

Construction of a Large Signature-Tagged Mini-Tn5 Transposon Library and Its Application to Mutagenesis of Sinorhizobium meliloti†

By Nataliya Pobigaylo, Danijel Wetter, Silke Szymczak, Ulf Schiller, Stefan Kurtz, Folker Meyer, Tim W. Nattkemper and Anke Becker


Sinorhizobium meliloti genome sequence determination has provided the basis for different approaches of functional genomics for this symbiotic nitrogen-fixing alpha-proteobacterium. One of these approaches is gene disruption with subsequent analysis of mutant phenotypes. This method is efficient for single genes; however, it is laborious and time-consuming if it is used on a large scale. Here, we used a signature-tagged transposon mutagenesis method that allowed analysis of the survival and competitiveness of many mutants in a single experiment. A novel set of signature tags characterized by similar melting temperatures and G+C contents of the tag sequences was developed. The efficiencies of amplification of all tags were expected to be similar. Thus, no preselection of the tags was necessary to create a library of 412 signature-tagged transposons. To achieve high specificity of tag detection, each transposon was bar coded by two signature tags. In order to generate defined, nonredundant sets of signature-tagged S. meliloti mutants for subsequent experiments, 12,000 mutants were constructed, and insertion sites for more than 5,000 mutants were determined. One set consisting of 378 mutants was used in a validation experiment to identify mutants showing altered growth patterns

Topics: Genetics and Molecular Biology
Publisher: American Society for Microbiology
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.