Skip to main content
Article thumbnail
Location of Repository

Self-assembly of colloids with liquid protrusions

By D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel

Abstract

A facile and flexible synthesis for colloidal molecules with well-controlled shape and tunable patchiness is presented. Cross-linked polystyrene spheres with a liquid protrusion were found to assemble into colloidal molecules by coalescence of the liquid protrusions. Similarly, cross-linked poly(methyl methacrylate) particles carrying a wetting layer assembled into colloidal molecules by coalescence of the wetting layer. Driven by surface energy, a liquid droplet on which the solid spheres are attached is formed. Subsequent polymerization of the liquid yields a wide variety of colloidal molecules as well as colloidosomes with tunable patchiness. Precise control over the topology of the particles has been achieved by changing the amount and nature of the swelling monomer as well as the wetting angle between the liquid and the seed particles. The overall cluster size can be controlled by the seed size as well as the swelling ratio. Use of different swelling monomers and/or particles allows for chemical diversity of the patches and the center. For low swelling ratios assemblies of small numbers of seeds resemble clusters that minimize the second moment of the mass distribution. Assemblies comprised of a large number of colloids are similar to colloidosomes exhibiting elastic strain relief by scar formation

Year: 2009
OAI identifier: oai:dspace.library.uu.nl:1874/42793
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dspace.library.uu.nl:80... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.