Minoes: A new approach to select a representative ensemble of structures in NMR studies of [partially] unfolded states. Application to Delta 25-PYP

Abstract

In nature, some proteins partially unfold under specific environmental conditions. These unfolded states typically consist of a large ensemble of conformations; their proper description is therefore a challenging problem. NMR spectroscopy is particularly well suited for this task: information on conformational preferences can be derived, for example, from chemical shifts or residual dipolar couplings. This information, which is measured as a time- and ensemble-average, can be used to model these states by generating large ensembles of conformations. The challenge is then to select a minimum representative set of conformations out of a large ensemble to represent the unfolded state. We have developed for this purpose an algorithm called MINOES (MINimum Optimal Ensemble Selection), which is based on an iterative procedure based on a driven expansion/contraction selection process. MINOES aims at selecting an optimal and minimal ensemble of conformations that, on average, maximizes the agreement between back-calculated and experimental (NMR) data, without any a-priori assumption about the required ensemble size. This approach is demonstrated by modeling the partially unfolded state of a deletion mutant of the Photoactive Yellow Protein, Delta 25-PYP, which has been previously characterized by NMR (Bernard et al., Structure 2005;13:953-962)

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.