Skip to main content
Article thumbnail
Location of Repository

Phosphatidylcholesterol bilayers. A model for phospholipid-cholesterol interaction

By M.K. Jain, F. Ramirez, T.M. McCaffrey, P.V. Ioannou, J.F. Marecek and J. Leunissen-Bijvelt


Aqueous dispersions of monovalent and divalent cation salts of O-(1,2-dipalmitoyl-sn-glycero-3-phosphoryl) cholesterol form multilamellar vesicles as shown by freeze-fracture electron microscopy, by electron micrographs of the negatively stained liposomes, and by swelling curves of liposomes in hypoosmotic medium. Differential scanning calorimetry reveals that aqueous dispersions of divalent metal salts of O-(1,2-dipalmitoyl-sn-glycero-3-phosphoryl)-cholesterol undergo a characteristic thermotropic phase transition with a relatively large cooperative unit (n > 250 for the calcium salt). In contrast, monovalent cation salts of O-(1,2-dipalmitoyl-sn-glycerol-3-phosphoryl)cholesterol do not show a thermotropic phase transition under comparable conditions. The molecular area of O-(1,2-dipalmitoyl-sn-glycero-3-phosphoryl)cholesterol in a monolayer is the same in the presence and absence of Ca2+, and is virtually equal to the area of an equimolar mixture of dipalmitoyl phosphatidic acid and cholesterol. To account for the novel state induced by Ca2+ on aqueous dispersions of O-(1,2-dipalmitoyl-sn-glycero-3-phosphoryl)cholesterol (i.e., bilayer organization and highly cooperative phase transition), a linear array model is proposed in which Ca2+ bridges adjacent arrays of O-(1,2-dipalmitoyl-sn-glycero-3-phosphoryl)cholesterol molecules, thus freezing the acyl chains in their normal state. One of the main corollaries of the model is that the cooperative unit for a thermotropic phase transition is essentially one-dimensional, rather than a two-dimensional matrix. O-(1,2-Dipalmitoyl-sn-glycero-3-phosphoryl)cholesterol is proposed as an orientationally and conformationally restricted analog of glycerophospholipid plus cholesterol in bilayers

Topics: Scheikunde, cholesterol, cooperativity, dipalmitoyl phosphatidylcholine, phospholipid, phase transition, bilayer
Year: 1980
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.