A new method to estimate ice age temperatures

Abstract

On glacial time scales, the waxing and waning of the Eurasian and North American ice sheets depend largely on variations in atmospheric temperature. As global sea level is primarily determined by the volume of these ice sheets, there is a direct (yet complex)relation between global sea level and the northern hemispheric (NH)temperature. This relation is essentially represented by a model of the NH ice sheets. We use a thermomechanical ice-sheet–ice shelf–bedrock model in conjunction with an inverse method to deduce a time series of NH temperature (from 120 kyr BP until present) that is consistent with the observed global sea level record. The advantage of this method is that it provides the annual mean surface air temperature averaged over the NH continents north of 40°N. The results reveal that ice age temperatures were 4–10°C lower than today, which agrees with other temperature reconstructions. However, reconstructed temperatures are comparitively low during the early stages of the glacial, a feature that is consistent with the rapid growth of the ice sheets. The sensitivity of the results for uncertainties in precipitation rate, in observed sea level and in some other model parameters is examined to quantify the error in reconstructed temperature. During the glacial period (120–15 kyr BP), surface air temperatures in the NH (north of 40°N) were 7.2±1.5°C lower than today’s(interglacial) temperatures

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.