Skip to main content
Article thumbnail
Location of Repository

Can stacking faults in hard-sphere crystals anneal out spontaneously?

By S. Pronk and D. Frenkel

Abstract

We estimate the rate at which randomly stacked hard-sphere crystals transform into the thermodynamically stable face-centered cubic phase. As an input for this estimate we need both the free-energy difference between bulk face-centered cubic (fcc) and hexagonal close packed (hcp) phases, and the hcp–fcc interfacial free energy. The latter quantity was computed using a lattice-switch Monte Carlo (MC) simulation method. We find the interfacial free energy to be nonzero but extremely small: 26 ± 6 · 10–5kT/σ2, where σ is the particle diameter. The free energy difference between the bulk phases was calculated using two different techniques. On the basis of our simulation results we estimate that in hard-sphere colloidal suspensions millimeter-sized randomly stacked crystal will anneal to form essentially pure fcc crystal on a time scale of months to years

Topics: Scheikunde
Year: 1999
OAI identifier: oai:dspace.library.uu.nl:1874/10461
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dspace.library.uu.nl:80... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.