Location of Repository

A discrete history of the Lorentzian path integral

By R. Loll

Abstract

In these lecture notes, I describe the motivation behind a recent formulation of\ud a non-perturbative gravitational path integral for Lorentzian (instead of the usual\ud Euclidean) space-times, and give a pedagogical introduction to its main features. At\ud the regularized, discrete level this approach solves the problems of (i) having a welldefined\ud Wick rotation, (ii) possessing a coordinate-invariant cutoff, and (iii) leading to\ud convergent sums over geometries. Although little is known as yet about the existence\ud and nature of an underlying continuum theory of quantum gravity in four dimensions,\ud there are already a number of beautiful results in d = 2 and d = 3 where continuum\ud limits have been found. They include an explicit example of the inequivalence of\ud the Euclidean and Lorentzian path integrals, a non-perturbative mechanism for the\ud cancellation of the conformal factor, and the discovery that causality can act as an\ud effective regulator of quantum geometry

Topics: Natuur- en Sterrenkunde
Publisher: Springer
Year: 2003
OAI identifier: oai:dspace.library.uu.nl:1874/8603
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dspace.library.uu.nl:80... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.