Carbon-isotope stratigraphy of the Cenomanian-Turonian Oceanic Anoxic Event: correlation and implications based on three key-localities

Abstract

We present new, detailed carbon-isotope records for bulk carbonate, total organic carbon (TOC) and phytane from three key sections spanning the Cenomanian-Turonian boundary interval (Eastbourne, England; Gubbio, Italy; Tarfaya, Morocco), with the purpose of establishing a common chemostratigraphic framework for Oceanic Anoxic Event (OAE) 2. Isotope curves from all localities are characterized by a positive carbon-isotope excursion of c. 4 for TOC and phytane and c. 2.5 for carbonate, although diagenetic overprinting appears to have obliterated the primary carbonate carbon-isotope signal in at least part of the Tarfaya section. Stratigraphically, peak ä13C values for all components are followed by intervals of high, near-constant ä13C in the form of an isotopic plateau. Recognition of an unambiguous return to background ä13C values above the plateau is, however, contentious in all sections, hence no firm chemostratigraphic marker for the end-point of the positive isotopic excursion can be established. The stratigraphically consistent first appearance of the calcareous nannofossil Quadrum gartneri at or near the Cenomanian-Turonian boundary as established by ammonite stratigraphy, in conjunction with the end of the ä13C maximum characteristic of the isotopic plateau, provides a potentially powerful tool for delimiting the stratigraphic extent and duration of OAE 2. This Oceanic Anoxic Event is demonstrated to be largely, if not wholly, confined to the latest part of the Cenomanian stag

Similar works

Full text

thumbnail-image

Utrecht University Repository

redirect
Last time updated on 14/06/2016

This paper was published in Utrecht University Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.