Skip to main content
Article thumbnail
Location of Repository

East Antarctic rifting triggers uplift of the Gamburtsev Mountains

By Fausto Ferraccioli, Carol A. Finn, Tom Jordan, Robin E. Bell, Lester Anderson and Setlef Damaske

Abstract

The Gamburtsev Subglacial Mountains are the least understood tectonic feature on Earth, because they are completely hidden beneath the East Antarctic Ice Sheet. Their high elevation and youthful Alpine topography, combined with their location on the East Antarctic craton, creates a paradox that has puzzled researchers since the mountains were discovered in 19581. The preservation of Alpine topography in the Gamburtsevs2 may reflect extremely low long-term erosion rates beneath the ice sheet3, but the mountains’ origin remains problematic. Here we present the first comprehensive view of the crustal architecture and uplift mechanisms for the Gamburtsevs, derived from radar, gravity and magnetic data. The geophysical data define a 2,500-km-long rift system in East Antarctica surrounding the Gamburtsevs, and a thick crustal root4 beneath the range. We propose that the root formed during the Proterozoic assembly of interior East Antarctica (possibly about 1 Gyr ago), was preserved as in some old orogens5, 6 and was rejuvenated during much later Permian (roughly 250 Myr ago) and Cretaceous (roughly 100 Myr ago) rifting. Much like East Africa7, the interior of East Antarctica is a mosaic of Precambrian provinces affected by rifting processes. Our models show that the combination of rift-flank uplift, root buoyancy and the isostatic response to fluvial and glacial erosion explains the high elevation and relief of the Gamburtsevs. The evolution of the Gamburtsevs demonstrates that rifting and preserved orogenic roots can produce broad regions of high topography in continental interiors without significantly modifying the underlying Precambrian lithosphere

Topics: Earth Sciences
Year: 2011
DOI identifier: 10.1038/nature10566
OAI identifier: oai:nora.nerc.ac.uk:15954
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://doi.org/10.1038/nature... (external link)
  • https://doi.org/10.1038/nature... (external link)
  • http://nora.nerc.ac.uk/id/epri... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.