Skip to main content
Article thumbnail
Location of Repository

Close coupling between ammonium uptake by phytoplankton and excretion by Antarctic krill, Euphausia superba

By Michael J. Whitehouse, Angus Atkinson and A.P. Rees

Abstract

In this study we examined the hypothesis that, under conditions of replete macronutrients and iron in the Southern Ocean, phytoplankton abundance and specific N uptake rates are influenced strongly by the processes of grazing and NH(4) regeneration. NH4 and NO(3) uptake rates by marine phytoplankton were measured to the northeast and northwest of the island of South Georgia during January-February 1998. Mean specific uptake rate for NO(3) (vNO(3)) was 0.0026 h(-1) (range 0.0013-0.0065 h(-1)) and for NH(4) (vNH(4)) was 0.0097 h(-1) (0.0014-0.0376 h(-1)). vNH(4) was related positively with NH(4) availability, which ranged from 0.1 to 1.5 mmol m(-3) within the upper mixed layer. Ambient NH(4) concentrations and vNH(4) were both positively related to local krill biomass values, computed from mean values along acoustic transect segments within 2 km of the uptake measurement stations. These biomass values ranged from similar to 1 g krill fresh mass m(-2) in the northwest to >4 kg krill wet mass m(-2) in the northeast. In contrast to the variability found with NH(4) concentrations and uptake rates, vNO(3) was more uniform across the sampling sites. Under these conditions, increasing NH(4) concentration appeared to represent an additional N resource. However, high vNH(4) tended to be found for stations with lower phytoplankton standing stocks, across a total range of 0.24-20 mg chlorophyll a m(-3). These patterns suggest a coupling between phytoplankton biomass, vNH(4) and krill in this region of variable but high krill biomass. Locally high concentrations of krill in parts of the study area appeared to have two opposing effects. On the one hand they could graze down phytoplankton stocks, but on the other hand, their NH(4) excretion supported enhanced uptake rates by the remaining, ungrazed cells. (C) 2011 Elsevier Ltd. All rights reserved

Topics: Marine Sciences, Biology and Microbiology, Chemistry
Publisher: Elsevier
Year: 2011
DOI identifier: 10.1016/j.dsr.2011.03.006
OAI identifier: oai:nora.nerc.ac.uk:15162
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.sciencedirect.com/s... (external link)
  • https://doi.org/10.1016/j.dsr.... (external link)
  • https://doi.org/10.1016/j.dsr.... (external link)
  • http://nora.nerc.ac.uk/id/epri... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.