Skip to main content
Article thumbnail
Location of Repository

Measuring biomass changes due to woody encroachment and\ud deforestation/degradation in a forest–savanna boundary region of central Africa using multi-temporal L-band radar backscatter

By E.T.A. Mitchard, S.S. Saatchi, S.L. Lewis, T.R. Feldpausch, I.H. Woodhouse, B. Sonke, C. Rowland and P. Meir


Satellite L-band synthetic aperture radar backscatter data from 1996 and 2007 (from JERS-1 and ALOS PALSAR respectively), were used with field data collected in 2007 and a back-calibration method to produce biomass maps of a 15 000 km2 forest–savanna ecotone region of central Cameroon. The relationship between the radar backscatter and aboveground biomass (AGB) was strong (r2 = 0.86 for ALOS HV to biomass plots, r2 = 0.95 relating ALOS-derived biomass for 40 suspected unchanged regions to JERS-1 HH). The root mean square error (RMSE) associated with AGB estimation varied from ~ 25% for AGB < 100 Mg ha− 1 to ~ 40% for AGB > 100 Mg ha− 1 for the ALOS HV data. Change detection showed a significant loss of AGB over high biomass forests, due to suspected deforestation and degradation, and significant biomass gains along the forest–savanna boundary, particularly in areas of low population density. Analysis of the errors involved showed that radar data can detect changes in broad AGB class in forest–savanna transition areas with an accuracy > 95%. However, quantitative assessment of changes in AGB in Mg ha− 1 at a pixel level will require radar images from sensors with similar characteristics collecting data from the same season over multiple years.\ud \u

Topics: Ecology and Environment
Year: 2011
DOI identifier: 10.1016/j.rse.2010.02.022
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.