Skip to main content
Article thumbnail
Location of Repository

Effects of collagen microstructure on the mechanics of the left ventricle.

By J Ohayon and R S Chadwick


The microstructure of the collagen sheath or weave surrounding a myocyte and the collagen struts interconnecting neighboring myocytes is incorporated into a fluid-fiber-collagen continuum description of the myocardium. The sheaths contribute to anisotropic elasticity, whereas the struts contribute to an isotropic component. Elastic moduli of the composite myocyte-sheath complex and the strut matrix are estimated from existing passive biaxial loading data from sheets of canine myocardium. The contribution of the sheath to the elasticity of the myocyte-sheath complex is critically dependent on the helical pitch angle. Calculations for a cylindrical model of the left ventricle using both a fluid-fiber and fluid-fiber-collagen stress tensor show that the collagen strut matrix tends to limit muscle fiber lengthening; increase myocardial tissue pressure during systole, with endocardial tissue pressure exceeding left ventricular pressure; decrease tissue pressure during diastole, and thus facilitate myocardial blood flow; and aid filling during ventricular relaxation by providing a suction effect that relies on a release of stored elastic energy from the previous contraction. Calculations show that this energy is stored mostly in the collagen struts

Topics: Research Article
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.