Skip to main content
Article thumbnail
Location of Repository

Applications of new saturation transfer electron paramagnetic resonance methodology to the rotational dynamics of the Ca-ATPase in sarcoplasmic reticulum membranes.

By T. C. Squier and D. D. Thomas


The presence of small amounts of weakly immobilized probes can result in large systematic errors in the measurement of correlation times (tau r) from saturation transfer EPR spectra. However, we have recently developed experimental methodology to minimize these errors (Squier and Thomas, Biophys. J., 49:921-935). In the present study we have applied this methodology to the measurement of the rotational motion of the Ca-ATPase in sarcoplasmic reticulum. This analysis involves the estimate of tau r from line-shape parameters (spectral line-height ratios) and intensity parameters (spectral integral), coupled with digital subtractions to remove spectral components corresponding to weakly immobilized probes. We have analyzed the ST-EPR spectra of the Ca-ATPase over a range of temperatures and find that, unlike line-shape parameters, intensity parameters are little affected by the subtraction of the weakly immobilized spectral component (W). Thus, tau r values from intensity parameters are a more reliable measurement of rotational motion. As reported previously, an analysis with line-shape parameters yields a nonlinear Arrhenius plot of protein mobility. However, the plot is linear when intensity parameters or corrected spectra are used, consistent with the theory for the hydrodynamic properties of a membrane protein of unchanging size and shape in a fluid bilayer. An analysis with line-shape parameters yields different effective tau r values in different spectral regions, and these tau r values are temperature-dependent. However, correction of spectra for W yields temperature-independent tau r ratios, indicating that the motional anisotropy is temperature-independent. Obtaining a good match for the weakly immobilized spectral component remains a major difficulty in the quantitative analysis of ST-EPR spectra using line-shape parameters. This study shows that intensity parameters can be used to avoid this problem, making the ST-EPR technique applicable in cases that were previously resistant to analysis

Topics: Research Article
Publisher: The Biophysical Society
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.