Skip to main content
Article thumbnail
Location of Repository

Microwave dielectric relaxation in muscle. A second look.

By K R Foster, J L Schepps and H P Schwan

Abstract

The dielectric permittivity and conductivity of muscle fibers from the giant barnacle, Balanus nubilus, have been measured at 1, 25, and 37 degrees C, between 10 MHz and 17 GHz. The dominant microwave dielectric relaxation process in these fibers is due to dipolar relaxation of the tissue water, which shows a characteristic relaxation frequency equal to that of pure water, ranging from 9 GHz (1 degree C) to 25 GHz (37 degree C). The total permittivity decrease, epsilon 0 -- epsilon infinity, due to this process accounts for approximately 95% of the water content of the tissue; thus, the major fraction of tissue water is dielectrically identical to the pure fluid on a picosecond time scale. A second dielectric process contributes significantly to the tissue dielectric properties between 0.1 and 1--5 GHz, and arises in part form Maxwell-Wagner effects due to the electrolyte content of the tissue, and in part from dielectric relaxation of the tissue proteins themselves

Topics: Research Article
OAI identifier: oai:pubmedcentral.nih.gov:1328696
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://www.pubmedcentral.nih.g... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.