Skip to main content
Article thumbnail
Location of Repository

History-matching flow simulations and time-lapse seismic data from the Sleipner CO2 plume

By R.A. Chadwick and D.J. Noy


Since its inception in 1996, the CO2 injection operation at Sleipner has been monitored by 3D time-lapse seismic surveys. Striking images of the CO2 plume have been obtained showing a multi-tier feature of high reflectivity. In the medium to longer term, the topmost layer of CO2, accumulating and migrating directly beneath the topseal is the main determinant of storage site performance. Fortunately it is this topmost layer that can be most accurately characterized, its rate of growth quantified, and CO2 flux arriving at the reservoir top estimated. The latter is mostly controlled by pathway flow through thin intra-reservoir mudstones. This has increased steadily with time suggesting either that pathway transmissivities are increasing with time, and/or the pathways are becoming more numerous. Detailed 3D history-matching of the topmost layer cannot easily match the observed rate of spreading. Isotropic permeabilities result in a stronger radial component than observed and a degree of anisotropic permeability, higher in a N-S direction, is possible. The main contributor to the mismatch however is likely to be small but significant uncertainty in the depth conversion. Irrespective of uncertainty, the observed rate of lateral migration seems to require very high permeabilities, and is, moreover, suggestive of a topseal which behaves like a ‘hard’ impermeable flow barrier. Detailed studies such as this will provide important constraints on longer-term predictive models of plume evolution and storage performance which are key regulatory requirements

Publisher: Geological Society of London
Year: 2010
DOI identifier: 10.1144/0071171
OAI identifier:

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.