Skip to main content
Article thumbnail
Location of Repository

Humic matter and contaminants: general aspects and modeling metal ion binding

By Luuk K. Koopal, Willem H. van Riemsdijk and David G. Kinniburgh


Humic substances are soil and fresh-water components that play an important role in the binding and transport of both organic and inorganic contaminants. Transport of the contaminants due to ground- and fresh-water dynamics is directly related to the risks associated with contaminations. The mobility of soluble humic substances is related to their interaction with soil mineral particles. Some key references for the binding of organic and inorganic contaminants and for the binding of humics to mineral particles are presented. Humic substances also play a role in the analysis of the contaminants in natural waters and with remediation of water or soil polluted with pesticides, heavy metal ions, and radionuclides. These aspects are illustrated with some examples. The problems that are encountered with the modeling of the binding of contaminants to humics and of heavy metal ions in particular are illustrated by considering the nonideal competitive adsorption model (NICA) extended with electrostatic interactions. The NICA-Donnan model gives quite good results for the description of metal ion binding, as is illustrated for metal ion binding to purified peat humic acid (PPHA). Finally, some remarks are made with respect to the use of the NICA-Donnan model in general purpose speciation programs and of simplified versions of the model for predictions under restricted environmental conditions

Publisher: International Union of Pure and Applied Chemistry
Year: 2001
DOI identifier: 10.1351/pac200173122005
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.