Skip to main content
Article thumbnail
Location of Repository

Hyperpycnal river flows from an active mountain belt

By Simon Dadson, Niels Hovius, Stuart Pegg, W. Brian Dade, M. J. Horng and H. Chen


Rivers draining the tectonically active island of Taiwan commonly discharge suspended sediment to the ocean at hyperpycnal concentrations (>40 kg m−3), typically during typhoon-driven floods. During the period 1970–1999, between 99 and 115 Mt yr−1 of sediment was discharged at hyperpycnal sediment concentrations from Taiwan to the sea. This amount represents 30–42% of the total sediment discharge from Taiwan to the ocean. The spatial distribution of hyperpycnal discharge broadly mirrors the pattern of total sediment discharge, and rivers draining catchments having recent earthquakes and weak rocks, such as the Choshui and Erhjen, discharge up to 50–70% of their sediment at hyperpycnal concentrations. Following the Chi-Chi earthquake, the frequency of hyperpycnal flows increased, because of an earthquake-driven increase in sediment supply. Landslides triggered by the Chi-Chi earthquake have resulted in an increase in the concentration of suspended sediment in rivers for a given water discharge. In turn, the threshold flood discharge required to generate hyperpycnal flow has decreased, and so hyperpycnal flows are occurring more frequently. Our findings suggest that if hyperpycnal plumes evolve into bottom-hugging gravity currents descending to and ultimately debouching in the deep sea, earthquakes may be recorded as bundles of turbidites. \ud \u

Topics: Earth Sciences
Year: 2005
DOI identifier: 10.1029/2004JF000244
OAI identifier:
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • (external link)
  • (external link)
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.