Non-hydrostatic and non-linear contributions to the internal wave energy flux in sill regions

Abstract

A three-dimensional non-linear, non-hydrostatic model in cross-sectional form is used to determine the factors influencing the relative importance of the linear, non-hydrostatic and non-linear contributions to the internal wave energy flux in sill regions due to tidal forcing. The importance of the free surface elevation term is also considered. Idealised topography representing the sill at the entrance to Loch Etive, the site of a recent measurement programme, is used. Calculations show that the non-linear terms in the energy flux become increasingly important as the sill Froude Number (F (s)) increases and the sill aspect ratio is increased. The vertical profile of the stratification, in particular its value close to the sill crest where internal waves are generated, has a significant influence on unsteady lee wave and mixed tidal-lee wave generation and the non-linear contribution to the energy flux. Calculations show that as F (s) increases, the energy flux due to the non-linear and non-hydrostatic terms increases more rapidly than the linear term. The importance of the non-linear terms in the energy flux also increases as the sill aspect ratio is increased. Increasing the buoyancy frequency reduces the contribution of the non-hydrostatic and non-linear terms to the total energy flux. Also, as the buoyancy frequency is increased, this reduces unsteady lee wave and mixed tidal-lee wave generation. In essence, these calculations show that the energy flux due to the non-hydrostatic and non-linear terms is appreciable in sill regions

Similar works

Full text

thumbnail-image

NERC Open Research Archive

redirect
Last time updated on 09/03/2012

This paper was published in NERC Open Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.