Modelling reactive halogen formation and ozone depletion in volcanic plumes

Abstract

The detection of bromine monoxide (BrO) in the plume of Soufrière Hills volcano (Bobrowski et al., 2003) using ultraviolet Differential Optical Absorption Spectroscopy (40 DOAS) provided the first direct evidence for reactive halogen formation in volcanic plumes. BrO chemistry is known to have significant effects on tropospheric oxidants, as has been observed in other locations (polar troposphere, marine, salt plains (von Glasow and Crutzen, 2007)). This knowledge led to speculation that ozone may be destroyed in volcanic plumes through reactive halogen chemistry 45 (Bobrowski et al., 2003), and highlighted the need to understand the impact of volcanic plume chemistry on the troposphere (as discussed by von Glasow et al., this issue). Here we present studies using a new model, PlumeChem that simulates the reactive halogen chemistry of volcanic plumes. Model simulations of BrO formation in the downwind plume are presented and compared to observations from several volcanoes. The impacts of reactive halogen chemistry on volcanic 50 NOx speciation and on tropospheric ozone depletion are investigate

Similar works

Full text

thumbnail-image

NERC Open Research Archive

redirect
Last time updated on 09/03/2012

This paper was published in NERC Open Research Archive.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.