Article thumbnail
Location of Repository

Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets

By Christian Rémésy, Christian Demigné and Jocelyne Aufrère


1. Inter-organ relationships between glucose, lactate and amino acids were studied by determination of plasma concentrations in different blood vessels of anaesthetized rats fed on either a high-carbohydrate diet [13% (w/w) casein, 79% (w/w) starch] or a high-protein diet [50% (w/w) casein, 42% (w/w) starch]. The period of food intake was limited (09:00–17:00h), and blood was collected 4h after the start of this period (13:00h). 2. Glucose absorption was considerable only in rats fed on a high-carbohydrate diet. Portal-vein–artery differences in plasma lactate concentration were higher in rats fed on this diet, but not proportional to glucose absorption. Aspartate, glutamate and glutamine were apparently converted into alanine, but when dietary protein intake was high, a net absorption of glutamine occurred. 3. The liver removed glucose from the blood in rats fed on a high-carbohydrate diet, but glucose was released into the blood in rats fed on the high-protein diet, probably as a result of gluconeogenesis. Lactate uptake was very low when amino acid availability was high. 4. In rats on a high-protein diet, increased uptake of amino acids, except for ornithine, was associated with a rise in portal-vein plasma concentrations, and in many cases with a decrease in hepatic concentrations. 5. Hepatic concentrations of pyruvate and 2-oxo-glutarate decreased without a concomitant change in the concentrations of lactate and malate in rats fed on the high-protein diet, in spite of an increased supply of pyruvate precursors (e.g. alanine, serine, glycine), suggesting increased pyruvate transport into mitochondria. 6. High postprandial concentrations of plasma glucose and lactate resulted in high uptakes of these metabolites in peripheral tissues of rats on both diets. Glutamine was released peripherally in both cases, whereas alanine was taken up in rats fed on a high-carbohydrate diet, but released when the amino acid supply increased. 7. It is concluded that: the small intestine is the main site of lactate production, and the peripheral tissues are the main site for lactate utilization; during increased ureogenesis in fed rats, lactate is poorly utilized by the liver; the gut is the main site of alanine production in rats fed on a high-carbohydrate diet and the liver utilizes most of the alanine introduced into the portal-vein plasma in both cases

Topics: Metabolism in Whole Organisms
Year: 1978
DOI identifier: 10.1042/bj1700321
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.