Article thumbnail
Location of Repository

Irreversible inhibition of delta 5-3-oxosteroid isomerase by 2-substituted progesterones.

By T M Penning


2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) were synthesized and screened as irreversible active-site-directed inhibitors of the delta 5-3-oxosteroid isomerase (EC from Pseudomonas testosteroni. Both compounds were found to inhibit the purified bacterial enzyme in a time-dependent manner. In either case the inactivated enzyme could be dialysed without return of activity, indicating that a stable covalent bond had formed between the inhibitor and the enzyme. Inactivation mediated by compounds (I) and (II) followed pseudo-first-order kinetics, and at higher inhibitor concentrations saturation was observed. The competitive inhibitor 17 beta-oestradiol offered protection against the inactivation mediated by both compounds, and initial-rate studies indicated that compounds (I) and (II) can also act as competitive inhibitors yielding Ki values identical with those generated during inactivation experiments. 2 alpha-Cyanoprogesterone (I) and 2-hydroxymethyleneprogesterone (II) thus appear to be active-site-directed. To compare the reactivity of these 2-substituted progesterones with other irreversible inhibitors of the isomerase, 3 beta-spiro-oxiranyl-5 alpha-pregnan-20 beta-ol (III) was synthesized as the C21 analogue of 3 beta-spiro-oxiranyl-5 alpha-androstan-17 beta-ol, which is a potent inactivator of the isomerase [Pollack, Kayser & Bevins (1979) Biochem. Biophys. Res. Commun. 91, 783-790]. Comparison of the bimolecular rate constants for inactivation (k+3/Ki) mediated by compounds (I)-(III) indicated the following order of reactivity: (III) greater than (II) greater than (I). 2-Mercaptoethanol offers complete protection against the inactivation of the isomerase mediated by 2 alpha-cyanoprogesterone (I). Under the conditions of inactivation compound (I) appears to be completely stable, and no evidence could be obtained for enolate ion formation in the presence or absence of enzyme. It is suggested that cyanoprogesterone inactivates the isomerase after direct nucleophilic attack at the electropositive 2-position, and that tautomerization plays no role in the inactivation event. By contrast, 2-mercaptoethanol offers no protection against the inactivation mediated by 2-hydroxymethyleneprogesterone, and under the conditions of inactivation this compound appears to exist in the semi-enolized form

Topics: Research Article
Year: 1985
OAI identifier:
Provided by: PubMed Central
Sorry, our data provider has not provided any external links therefore we are unable to provide a link to the full text.

Suggested articles

To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.