Location of Repository

Improving tag recommendation using social networks

By Adam Rae, Börkur Sigurbjörnsson and Roelof van Zwol

Abstract

In this paper we address the task of recommending additional tags to partially annotated media objects, in our case images. We propose an extendable framework that can recommend tags using a combination of different personalised and collective contexts. We combine information from four contexts: (1) all the photos in the system, (2) a user's own photos, (3) the photos of a user's social contacts, and (4) the photos posted in the groups of which a user is a member. Variants of methods (1) and (2) have been proposed in previous work, but the use of (3) and (4) is novel.\ud For each of the contexts we use the same probabilistic model and Borda Count based aggregation approach to generate recommendations from different contexts into a unified ranking of recommended tags. We evaluate our system using a large set of real-world data from Flickr. We show that by using personalised contexts we can significantly improve tag recommendation compared to using collective knowledge alone. We also analyse our experimental results to explore the capabilities of our system with respect to a user's social behaviour

Year: 2010
OAI identifier: oai:oro.open.ac.uk:21273
Provided by: Open Research Online

Suggested articles

Preview


To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.