Starting from the ACV approach to transplanckian scattering, we present a development of the reduced-action model in which the (improved) eikonal representation is able to describe particles’ motion at large scattering angle and, furthermore, UV-safe (regular) rescattering solutions are found and incorporated in the metric. The resulting particles’ shock-waves undergo calculable trajectory shifts and time delays during the scattering process — which turns out to be consistently described by both action and metric, up to relative order R 2 /b 2 in the gravitational radius over impact parameter expansion. Some suggestions about the role and the (re)scattering properties of irregular solutions — not fully investigated here — are also presented

Similar works

Full text

Open Access RepositoryProvided a free PDF (195.62 KB)

Last time updated on May 17, 2016

This paper was published in Open Access Repository.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.