Improvement of Sec-dependent secretion of a heterologous model protein in Bacillus subtilis by saturation mutagenesis of the N-domain of the AmyE signal peptide


Due to the lack of an outer membrane, Gram-positive bacteria (e.g., Bacillus species) are considered as promising host organisms for the secretory production of biotechnologically relevant heterologous proteins. However, the yields of the desired target proteins were often reported to be disappointingly low. Here, we used saturation mutagenesis of the positively charged N-domain (positions 2-7) of the signal peptide of the Bacillus subtilis alpha-amylase (AmyE) as a novel approach for the improvement of the secretion of a heterologous model protein, cutinase from Fusarium solani pisi, by the general secretory pathway of B. subtilis. Automated high-throughput screening of the resulting signal peptide libraries allowed for the identification of four single point mutations that resulted in significantly increased cutinase amounts, three of which surprisingly reduced the net charge of the N-domain from +3 to +2. Characterization of the effects of the identified mutations on protein synthesis and export kinetics by pulse-chase analyses indicates that an optimal balance between biosynthesis and the flow of the target protein through all stages of the B. subtilis secretion pathway is of crucial importance with respect to yield and quality of secreted heterologous proteins

Similar works

Full text


Juelich Shared Electronic Resources

Provided original full text link
oaioai:juser.fz-juelich.de:8880Last time updated on 5/16/2016

This paper was published in Juelich Shared Electronic Resources.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.