Article thumbnail
Location of Repository

Species-Specific Tropism Determinants in the Human Immunodeficiency Virus Type 1 Capsid

By Theodora Hatziioannou, Simone Cowan, Uta K. von Schwedler, Wesley I. Sundquist and Paul D. Bieniasz

Abstract

Retroviral tropism is determined in part by cellular restriction factors that block infection by targeting the incoming viral capsid. Indeed, human immunodeficiency virus type 1 (HIV-1) infection of many nonhuman primate cells is inhibited by one such factor, termed Lv1. In contrast, a restriction factor in humans, termed Ref1, does not inhibit HIV-1 infection unless nonnatural mutations are introduced into the HIV-1 capsid protein (CA). Here, we examined the infectivity of a panel of mutant HIV-1 strains carrying substitutions in the N-terminal CA domain in cells that exhibit restriction attributable to Lv1 or Ref1. Manipulation of HIV-1 CA could alter HIV-1 tropism, and several mutations were identified that increased or decreased HIV-1 infectivity in a target-cell-specific manner. Many residues that affected HIV-1 tropism were located in the three variable loops that lie on the outer surface of the modeled HIV-1 conical capsid. Some tropism determinants, including the CypA binding site, coincided with residues whose mutation conferred on HIV-1 CA the ability to saturate Ref1 in human cells. Notably, a mutation that reverses the infectivity defect in human cells induced by CypA binding site mutation inhibits recognition by Ref1. Overall, these findings demonstrate that exposed variable loops in CA and a partial CypA “coat” can modulate restriction and HIV-1 tropism and suggest a model in which the exposed surface of the incoming retroviral capsid is the target for inhibition by host cell-specific restriction factors

Topics: Virus-Cell Interactions
Publisher: American Society for Microbiology
Year: 2004
DOI identifier: 10.1128/JVI.78.11.6005-6012.2004
OAI identifier: oai:pubmedcentral.nih.gov:415825
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • http://dx.doi.org/10.1128/JVI.... (external link)
  • Suggested articles


    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.