10.1119/1.1359520

Basic physics of xylophone and marimba bars

Abstract

The frequency-dependent wave velocity and nonsinusoidal spatial dependence found for transverse waves in finite vibrating bars stands in stark contrast to the solutions to the one-dimensional wave equation, for example for the idealized vibrating string. The difference is particularly important when the resulting vibrations are used to produce music. Here, the appropriate approximate equations for transverse vibrations on a uniform bar are developed and compared to measurements using wooden bars. The results are extended using a simple finite element model to provide a means to predict normal mode behavior in nonuniform wooden bars such as those used for xylophones, marimbas, and related musical instruments. © 2001 American Association of Physics Teachers

Similar works

Full text

thumbnail-image

Michigan Technological University

Full text is not available
oai:digitalcommons.mtu.edu:michigantech-p-31505Last time updated on 11/25/2020

This paper was published in Michigan Technological University.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.