Article thumbnail
Location of Repository

Calcineurin Regulates Cyclin D1 Accumulation in Growth-stimulated Fibroblasts

By Christina R. Kahl and Anthony R. Means


Calcium (Ca(2+)) and calmodulin (CaM) are required for progression of mammalian cells from quiescence into S phase. In multiple cell types, cyclosporin A causes a G(1) cell cycle arrest, implicating the serine/threonine phosphatase calcineurin as one Ca(2+)/CaM-dependent enzyme required for G(1) transit. Here, we show, in diploid human fibroblasts, that cyclosporin A arrested cells in G(1) before cyclin D/cdk4 complex activation and retinoblastoma hyperphosphorylation. This arrest occurred in early G(1) with low levels of cyclin D1 protein. Because cyclin D1 mRNA was induced normally in the cyclosporin A-treated cells, we analyzed the half-life of cyclin D1 in the presence of cyclosporin A and found no difference from control cells. However, cyclosporin A treatment dramatically reduced cyclin D1 protein synthesis. Although these pharmacological experiments suggested that calcineurin regulates cyclin D1 synthesis, we evaluated the effects of overexpression of activated calcineurin on cyclin D1 synthesis. In contrast to the reduction of cyclin D1 with cyclosporin A, ectopic expression of calcium/calmodulin-independent calcineurin promoted synthesis of cyclin D1 during G(1) progression. Therefore, calcineurin is a Ca(2+)/CaM-dependent target that regulates cyclin D1 accumulation in G(1)

Topics: Articles
Publisher: The American Society for Cell Biology
Year: 2004
DOI identifier: 10.1091/mbc.E03-10-0730
OAI identifier:
Provided by: PubMed Central
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.