Speech enhancement based on nonnegative matrix factorization with mixed group sparsity constraint

Abstract

International audienceThis paper addresses a challenging single-channel speech enhancement problem in real-world environment where speech signal is corrupted by high level background noise. While most state-of-the-art algorithms tries to estimate noise spectral power and filter it from the observed one to obtain enhanced speech, the paper discloses another approach inspired from audio source separation technique. In the considered method, generic spectral characteristics of speech and noise are first learned from various training signals by non-negative matrix factorization (NMF). They are then used to guide the similar factorization of the observed power spectrogram into speech part and noise part. Additionally, we propose to combine two existing group sparsity-inducing penalties in the optimization process and adapt the corresponding algorithm for parameter estimation based on mul-tiplicative update (MU) rule. Experiment results over different settings confirm the effectiveness of the proposed approach

Similar works

Full text

thumbnail-image

Hal - Université Grenoble Alpes

redirect
Last time updated on 22/11/2020

This paper was published in Hal - Université Grenoble Alpes.

Having an issue?

Is data on this page outdated, violates copyrights or anything else? Report the problem now and we will take corresponding actions after reviewing your request.