Article thumbnail

Investigating mixotrophic metabolism in the model diatom Phaeodactylum tricornutum

By Valeria Villanova, Antonio Emidio Fortunato, Dipali Singh, Davide Dal Bo, Melissa Conte, Toshihiro Obata, Juliette Jouhet, Alisdair R. Fernie, Eric Marechal, Angela Falciatore, Julien Pagliardini, Adeline Le Monnier, Mark Poolman, Gilles Curien, Dimitris Petroutsos and Giovanni Finazzi


Diatoms are prominent marine microalgae, interesting not only from an ecological point of view, but also for their possible use in biotechnology applications. They can be cultivated in phototrophic conditions, using sunlight as the sole energy source. Some diatoms, however, can also grow in a mixotrophic mode, wherein both light and external reduced carbon contribute to biomass accumulation. In this study, we investigated the consequences of mixotrophy on the growth and metabolism of the pennate diatom Phaeodactylum tricornutum, using glycerol as the source of reduced carbon. Transcriptomics, metabolomics, metabolic modelling and physiological data combine to indicate that glycerol affects the central-carbon, carbon-storage and lipid metabolism of the diatom. In particular, provision of glycerol mimics typical responses of nitrogen limitation on lipid metabolism at the level of triacylglycerol accumulation and fatty acid composition. The presence of glycerol, despite provoking features reminiscent of nutrient limitation, neither diminishes photosynthetic activity nor cell growth, revealing essential aspects of the metabolic flexibility of these microalgae and suggesting possible biotechnological applications of mixotrophy.This article is part of the themed issue 'The peculiar carbon metabolism in diatoms'

Topics: photosynthesis, omics analyses, mixotrophy, metabolism, marine diatoms, métabolisme, photosynthèse, approche omique, micro-algue, glycerol, [SDV.OT]Life Sciences [q-bio]/Other [q-bio.OT]
Publisher: 'The Royal Society'
Year: 2017
DOI identifier: 10.1098/rstb.2016.0404
OAI identifier: oai:HAL:hal-01608690v1
Download PDF:
Sorry, we are unable to provide the full text but you may find it at the following location(s):
  • https://hal.archives-ouvertes.... (external link)
  • Suggested articles

    To submit an update or takedown request for this paper, please submit an Update/Correction/Removal Request.